
Systems and Approaches for Question Answering
Mgr. Petr Baudiš

August 31, 2015

Abstract

I define and explore the task of Factoid Question Answering. This involves understanding
a naturally phrased question about some (often open domain) fact, looking this fact up
in a knowledge base (structured database or unstructured text corpus), and scoring the
candidate answers. I survey the recent scientific work and directions in this field, define
some interesting sub-tasks and propose a new dataset. I then present my own baseline QA
pipeline YodaQA that combines both structured and unstructured approaches. Based on
experiences with this baseline and survey of the field, I propose some scientifically promising
lines of further QA research.

Errata: This is a report that was finished in a bit of a rush for a deadline, and has
numerous imperfections that I dislike but couldn’t have avoided:

• The survey should be considered preliminary, and is further worked on at https:
//github.com/brmson/qasurvey. Many more unstructured, miscellanous and spe-
cialized systems should have been described in detail. Entity linking should be sur-
veyed.

• The description of YodaQA v1.1 contains omissions. Gradient-boosted decision forests
are currently used for answer scoring instead of logistic regression. Coarse question
classification is used to generate extra features for the answer-scoring decision trees.
Entity linking involves a fuzzy label lookup.

• YodaQA v1.1 itself is sub-optimal; the MRR of an improved version available at the
time of this writing (v1.2) is 0.430 on curated, with precision@1 over 35%. The only
change between v1.1 and v1.2 was retraining of the CRF model for answer production
from passages.

• YodaQA evaluation on WebQuestions leaves much to be desired. While it uses “only
structured sources”, these include also DBpedia; restricting this to just Freebase actu-
ally improves F1@1 and MRR, though it hurts AP recall. Also, F1 (Berant) is badly
missing, but this will require some infrastructure changes in YodaQA to handle answer
lists in datasets.

1

https://github.com/brmson/qasurvey
https://github.com/brmson/qasurvey

Contents

1 Introduction 4
1.1 Factoid Question Answering . 4
1.2 Task Outline . 4
1.3 This Thesis Proposal . 5

2 State of the Art in Factoid Question Answering 6
2.1 Structured Data QA . 6

2.1.1 Dataset and Evaluation . 7
2.1.2 Information Retrieval Approach . 8
2.1.3 Semantic Parsing Approach . 9

2.2 Unstructured Data QA . 10
2.2.1 Dataset and Evaluation . 10
2.2.2 Answer Sentence Selection . 11
2.2.3 Precise Answer Production . 12
2.2.4 Non-TREC QA . 12

2.3 Auxiliary Tasks in QA . 13
2.3.1 Question Classification . 13
2.3.2 Answers by Paraphrasing . 14

2.4 Hybrid QA Systems . 14
2.5 Non-Factoid QA . 14
2.6 Vector Embeddings of Words . 15

3 The YodaQA System 18
3.1 YodaQA Pipeline Architecture . 18
3.2 YodaQA Reference Pipeline . 19

3.2.1 Question Analysis . 20
3.2.2 Unstructured Knowledge Bases . 20
3.2.3 Structured Knowledge Bases . 21
3.2.4 Answer Analysis . 21
3.2.5 Answer Merge-and-Score . 22
3.2.6 Successive Refining . 22

3.3 Results . 23
3.3.1 Experimental Setup . 23
3.3.2 System Evaluation . 24
3.3.3 Comparison to Other Systems . 24

3.4 Datasets and Other Work . 24

2

4 Future Work 28

5 Conclusion 30
5.1 Acknowledgements . 30

A Portfolio-Based Optimization 31
A.1 Online Black-box Algorithm Portfolios . 31
A.2 Minimizing Separable Functions by a Mix of Methods 32

Bibliography 33

3

Chapter 1

Introduction

In this report, I would like to propose a doctoral thesis to write and defend at the Czech
Technical University on the topic of question answering systems.

This thesis proposal is a little unusual since I have radically changed the topic of my research
in the course of my second year of study: from portfolio-based function optimization to question
answering systems. Therefore, the bulk of my research results published up to now are not on
topic of the proposed thesis; my work on portfolio-based optimization is summarized in App. A.

The current focus of my doctoral research is improving the state-of-art in the field of factoid
question answering. My main results so far have been building an extensive question answering
system YodaQA (Baudiš, 2015b) and proposing a high-quality dataset (Baudiš, 2015a), but I
have also for example applied the system to a biological QA domain (Baudiš and Šedivỳ, 2015).
This research is primarily supervised by Dr. Jan Šedivý; some of the newest results have been
achieved while collaborating with intern students in our group.

1.1 Factoid Question Answering
Let us consider the Question Answering problem — a function of unstructured user query that
returns the information queried for. This is a harder problem than a linked data graph search
(which requires a precisely structured user query) or a generic search engine (which returns
whole documents or sets of passages instead of the specific information).

The Question Answering task is however a natural extension of a search engine, as cur-
rently employed e.g. in Google Search (Singhal, 2012) or personal assistants like Apple Siri, and
with the high profile IBM Watson Jeopardy! matches (Ferrucci et al., 2010) it has became a
benchmark of progress in AI research.

My goal is ultimately building a general purpose QA system. Thus, I consider an “open
domain” general factoid question answering, rather than domain-specific applications, though
keeping flexibility in this direction is certainly worthwhile.

1.2 Task Outline
Diverse QA system architectures have been proposed in the last 15 years, applying different
approaches to information retrieval. A full survey follows, for now let me outline at least the
most basic choices I faced when designing my system.

4

First, the restriction to factoid questions means the system is essentially an extension of a
search engine (rather than deducing facts logically) and should return precisely specified, rela-
tively short text snippets as short answers. Answering happens mainly based on fact lookup.
This is in contrast with different question answering tasks (like Language Comprehension En-
trance Exams) where the system needs to process a text passage and answer tricky questions
about the text meaning (see Sec. 2.5).

Perhaps the most popular approach in factoid QA research has been restricting the task
to querying structured knowledge bases, typically using the RDF paradigm and accessible via
SPARQL. The QA problem can be then rephrased as learning a function translating free-text
user query to a structured lambda expression or SPARQL query. (Berant et al., 2013; Bordes
et al., 2014) I prefer to focus on unstructured datasets as the coverage of the system as well
as domain versatility increases dramatically; building a combined portfolio of structured and
unstructured knowledge bases is then again an obvious extension.

When relying on unstructured knowledge bases, a common strategy is to offload the infor-
mation retrieval on an external high-quality web search engine like Google or Bing (see e.g.
the AskMSR system (Brill et al., 2002) or many others). I make a point of relying purely
on local information sources.While the task becomes noticeably harder, I believe the outcome
is a more universal system that could be readily refocused on a specific domain or proprietary
knowledge base, and also a system more appropriate as a scientific platform as the results are
fully reproducible over time.

Finally, a common restriction of the QA problem concerns only selecting the most relevant
answer-bearing passage, given a tuple of input question and set of pre-selected candidate pas-
sages (Wang et al., 2007). This Answer Sentence Selection task is certainly worthwhile as a
component of a QA system but does not form a full-fledged system by itself. It may be argued
that returning a whole passage is more useful for the user than a direct narrow answer, but
this precludes any reasoning or other indirect answer synthesis on the part of the system, while
the context and supporting evidence can be still provided by the user interface. Direct answer
output may be also used in a more general AI reasoning engine, an idea that I keep in sight
within my design though it is clearly out of scope for the thesis I propose.

To summarize, the system I propose should produce short, clear answers based on infor-
mation retrieval from both unstructured (full-text) and structured (database) knowledge bases,
and not rely on any “omniscient web search” to make the task easier specifically in the open
domain setting.

1.3 This Thesis Proposal
The rest of this proposal shall focus on building the case for a thesis on the topic of factoid
question answering. Chapter 2 surveys the field in detail, examining different formulations of
the problem as well as a variety of sub-tasks, reference datasets and approaches, and recent
progress in the field. Chapter 3 describes the work I have done on the thesis so far — this
revolves mainly around the question answering system YodaQA that I have built, but also
progress on some of the QA sub-tasks. Chapter 4 outlines some of the specific problems of QA
to focus on in the thesis. I conclude the proposal with a summary in Chapter 5.

5

Chapter 2

State of the Art in Factoid Question
Answering

The research in Question Answering has been proceeding in several, largely independent, di-
rections. The main division is between QA on structured knowledge bases (typically graph
databases like the semantic web) and QA on unstructured text corpora (typically Wikipedia,
ClueWeb, large amounts of news articles, or even a web search).

Below, we survey the recent activity in these fields. For a historical viewpoint, we refer the
reader to Wang (2006), Allam and Haggag (2012) and Lopez et al. (2011).

2.1 Structured Data QA
When answering questions on structured data, we can further consider either helping users access
relational databases (Natural Language Interface to Databases; NLIDB) or finding matching
relationships in the linked data graph of semantic web (Ontology-based Question Answering;
QALD).

We are not aware of any significant recent work in the NLIDB domain that would be based
on well defined, published dataset and rigorously evaluate results — most research concerns
building auxiliary systems that augment human database experts. (Bergamaschi et al., 2010;
Blunschi et al., 2012) We do not consider this branch of research further.

QALD is much richer field of research, with yearly challenges (Unger, 2014) and popular
reference datasets like Free917 (Cai and Yates, 2013) and WebQuestions (Berant et al., 2013).1
The reference knowledge base is typically Freebase (Bollacker et al., 2008), which holds a large
amount of open domain real-world facts.2 QALD is one of the benchmarks for the semantic
parsing task (Liang, 2015), aiming to map a naturally phrased question to a logical form (to be
in this case executed as a graph query on a knowledge base). (Berant and Liang, 2014; Bordes
et al., 2014)

(Bordes et al., 2014) proposed a classification of QALD methods that we adopt, outlining
two general paradigms:

Information Retrieval (IR) systems first retrieve a broad set of candidate answers
1In the past, closed-domain datasets like GeoQuery were also popular.
2Freebase has been phased out into legacy state at this point. WikiData is set to replace it, but the migration

of knowledge is still ongoing.

6

by querying the search API of KBs with a transformation of the question into
a valid query and then use fine-grained detection heuristics to identify the exact
answer. On the other hand, Semantic Parsing (SP) methods focus on the correct
interpretation of the meaning of a question by a semantic parsing system. A correct
interpretation converts a question into the exact database query that returns the
correct answer.

These two strategies have been also compared in detail in Yao et al. (2014) and appear
roughly comparable in accuracy.

2.1.1 Dataset and Evaluation
The most popular question dataset is WebQuestions, which contains 3778 training and 2032
testing questions generated automatically by a combination of Google Suggest API and Free-
base3 and with the gold standard answers manually produced by Amazon Mechanical Turk
workers.4 Answers are always Freebase entities — never relations themselves, literals like nu-
merical quantities, metadata like counts, or whole sentences. Sometimes, the correct answers
are lists of entities. Extra measurements on customized versions of TREC (see below) and
WikiQuestions datasets are also sometimes published.

There is no complete consensus on benchmarking metrics in this task, owing to different
strategies in the systems. In the simplest case, a single query is generated for every question
and its result is matched with the gold standard (Berant et al., 2013), then we may measure
just the accuracy (i.e. proportion of correctly answered questions).

However, most systems generate a ranked list of candidate answers. IR list measures are
sometimes used (Fader et al., 2013; Bordes et al., 2014): MRR (Mean Reciprocial Rank) can
capture the average rank the correct answer appears at, while MAP (Mean Average Precision)
is not as intuitively interpretable, but generalizes even to a scenario with multiple expected
correct answers. Aside of that, an option is to consider only correctness of the best answer,
introducing measures precision@1 as the proportion of questions that have a correct answer
ranked first (and, if some questions generate no answers, recall@1 and F1@1).

However, the official WebQuestions evaluation script of (Berant et al., 2013) considers the
complete set of returned answers — this fits e.g. (Yao and Van Durme, 2014), where answer cor-
rectness is treated as a binary classification problem and answers classified as true are returned
(e.g. with logistic regression output larger than 0.5 as proposed in Yao et al. (2014)). We term
these answer precision and answer recall. The most common measure shared by most papers is
F1 (with recall as a proportion of correct answers found). However, even this measure comes in
two variations: F1 (Berant) is average of precision/recall harmonic means per question,5 while
F1 (Yao) is harmonic mean of answer precision and recall computed across all questions, which
gives an incentive to a system not to answer some questions.

3Note that no fixed version of Freebase is used. Since the answers are typically not a subject of temporal drift,
it is unlikely that different Freebase snapshots would yield significant differences, but we are not aware of any
study confirming this.

4The gold standard has noise level of about 5% questions, based on manual error analysis of a Google QA
test on a movies sub-sample.

5This is about the same as the accuracy in Berant et al. (2013) style systems. When comparing using this
measure in ranked-answers systems, a single answer is often forced even if none would be produced for the
question otherwise. (Yao et al., 2014)

7

System F1@1 F1 (Berant) F1 (Yao)
Fader et al. (2014) — — (35.0%)

Yao and Van Durme (2014) 35.4% 33.0% 42.0%
Bordes et al. (2014) 40.4% 39.2% 43.2%

Yao (2015) — 44.3% 53.5%
Bast and Haussmann (2015) — 49.4% —

Berant et al. (2013) 35.7% 35.7% —
Bao et al. (2014) 37.5% 37.5% —

Berant and Liang (2014) 39.9% 39.9% 43.0%
Chang and Gao (2015) — 52.5% —

Figure 2.1: Benchmark results of structured KB systems on the WebQuestions dataset using
Freebase. Values in parenthesis have caveats like subsampling or manual evaluating.

Ultimately, the difference between the two approaches is how strictly are answers to list-
based questions evaluated and what policy does a system choose for picking answers to be
evaluated (first, all with score above 0.5, etc.). We recommend that to facilitate comparison
between systems that make different choices and possibly do not emphasize list performance,6
future systems report both metrics that give credit to the best rank of at least a single list
element (F1@1, MRR), and metrics that strictly rate the appearance of all list elements and
treat all generated answers as a proposed list (F1 (Berant, Yao), MAP). (Systems which generate
an answer to each question will have F1@1 equal to precision@1 and recall@1.)

2.1.2 Information Retrieval Approach
Open Question Answering Over Curated and Extracted Knowledge Bases (OQA)
(Fader et al., 2014) is a complex multi-stage system: the question is paraphrased (using mined
operators), parsed to a KB query (by manual templates), the query rewritten (using mined
operators again), and executed (on an ensemble of KBs including Freebase). On WebQuestions,
F1 (Yao — probably) is reported at 35%. Results on TREC were also reported, with F1 29%.
However, the answers were evaluated manually. The implementation is open source.

Information Extraction over Structured Data: Question Answering with Free-
base (Jacana Freebase) (Yao and Van Durme, 2014) produces a set of fixed dependency-parse
based question features. The question entity is linked to a Freebase concept using the Freebase
Search API; Freebase concepts neighboring the question concept in the knowledge graph are
identified; Freebase features are generated for all properties of each concept, the connecting
relation and rank of the connecting relation predicted by a question-relation alignment model.
The alignment model is a bag-of-words naive bayes classifier that predicts the probability of a
relation (or sub-relation) component based on the question tokens; it is trained on ClueWeb
sentences that contain both the question and answer. Finally, composite features are built for
all tuples of question and Freebase features and a logistic regression model predicts the most
likely Freebase concept to answer. As (Yao et al., 2014) also further clarifies, on WebQues-
tion+Freebase, this scores F1 (Yao) 42.0%, with answer precision 38.8% and answer recall
42.0%, and F1@1 35.4%. Without the alignment model, the system has F1 (Yao) 36.9%. The
implementation is open source.

6Below, we show that in unstructured QA, it is common to disregard list-based performance. Therefore, this
aspect is important to hybrid systems.

8

Question Answering with Subgraph Embeddings (Bordes et al., 2014) considers the
QA task as a problem of finding a vector embedding of the question and candidate answers such
that the score — a scalar product of these embeddings7 — is highest for the correct answer.
Question embedding is produced by averaging word embeddings (as in Sec. 2.6; word embeddings
are trained from scratch), the embedding matrix was also trained to produce similar vectors for
question paraphrases (based on WikiAnswers). Answers are embedded from high-dimensional
binary encoding of entities and relations in the subgraph surrounding the answer and the path
between the question and answer. To generate candidate answers, the immediate neighborhood
of the question concept is explored, and in addition directional forrays are made based on
score of embeddings of particular relations. Aside of WebQuestion training set, automatically
produced 2 million questions from ClueWeb were included for training. WebQuestions+Freebase
precision@1 is 40.4% and full-result F1 (Berant) is 39.2% and F1 (Yao) 43.2%. (In ensemble
with Berant and Liang (2014), F1 is reported as 41.8% (Berant) or 45.7% (Yao).)

Lean Question Answering over Freebase from Scratch (kitt.ai) (Yao, 2015) is a
simple approach that uses fuzzy matching of all question bigrams to link entities to Freebase
concepts, sorts them in the Freebase Search API order, and predicts Freebase relations linking
the concept with the answer by a bag-of-unigrams-and-bigrams logistic regression. On We-
bQuestions+Freebase, it scores F1 (Berant) 44.3%, F1 (Yao) 53.5%. On the training set, this
approach had AP recall of 62%.

More Accurate Question Answering on Freebase (Bast and Haussmann, 2015) is
an end-to-end system that first aggressively links many potential question entities to Freebase
concepts, then generates answer candidates by matching three pre-defined templates in the
knowledge (including one that uses entity pairs). Answers are filtered based on trivial type
checking, and scored based on Freebase relation(s) alignment with the question — number
of overlaping words, derived words, word vector embedding cosine similarities and indicator
words in question trained by distant supervision (Wikipedia sentences that contain two entities
connected with such relation in Freebase would often have the indicator word on the path
between the entities in dependency parse). The answers are ranked using pairwise random
forest ranker. On WebQuestions+Freebsae, it scores F1 (Berant) 49.4%.

2.1.3 Semantic Parsing Approach
The semantic parsing field has too many publications to list them all in detail here. There-
fore, we chose to restrict ourselves only to semantic parsers that report results on unabridged
WebQuestions dataset, so that we can facilitate easy comparison. Most notably, we omit mod-
ern semantic parsers preceding the dataset (Kwiatkowski et al., 2013; Cai and Yates, 2013),
parsers with only partial evaluation (Reddy et al., 2014) and parsers using different datasets
like WikiAnswers Fader et al. (2013).

Semantic Parsing on Freebase from Question-Answer Pairs (SEMPRE) (Berant
et al., 2013) was the semantic parsing system that first introduced the WebQuestions dataset and
remains a popular baseline. It builds a lexicon mapping from phrases to predicates by aligning
Freebase to ClueWeb and producing co-occurrence based features, then generates additional
predicates (bridging) based on neighboring predicates. The baseline WebQuestions+Freebase
accuracy is 35.7% (as revised in Yao et al. (2014); this number is equivalent to answer precision,
recall and F1 (Berant) as well as these metrics @1 for this system as it generates a single answer

7That is, non-normalized cosine similarity of vectors.

9

(or answer list) hypothesis for each question). The implementation is open source.
Knowledge-Based Question Answering as Machine Translation (Bao et al., 2014)

considers converting a question to an answer as a machine translation problem, with the formal
query as Meaning Representation and various partial derivations of the question converted and
composed to these representations. We do not include details since accuracy is only 37.5% and
involves training on several thousand hand-labelled questions.

Semantic Parsing via Paraphrasing (ParaSempre) (Berant and Liang, 2014) extends
the work of Fader et al. (2013) (Paralex) on learning a rich lexicon for logical form translation
rules based on the WikiAnswers dataset which contains clusters of equivalent but differently
phrased questions. In this paper, five query templates are manually defined, along with eight
general transformation rules. From the input question, a number of possible logical forms are
generated and then scored by a paraphrase-based model, using features based on word asso-
ciations and features based on averaged word vector embeddings with a generative model for
embeddings alignment (similar to Yu et al. (2014) described in detail in Sec. 2.2.2). WebQues-
tions+Freebase accuracy is reported to be 39.9%. Bordes et al. (2014) reports that F1 (Yao) is
43.0%.

Semantic Parsing via Staged Query Graph Generation: Question Answering
with Knowledge Base (STAGG) (Chang and Gao, 2015) produces the logical forms of
questions in the form of subgraph templates to be matched against the Freebase knowledge
graph, facilitating robust answering of even multiple-concept questions (such as which actor
plays character X in Y); the subgraph templates also include aggregation operators. S-MART
Yang and Chang (2015) is used for entity linking that has similar recall as Freebase Search API,
but twice the precision. The core inferential chain is built as a property path between question
topic and answer concept within Freebase, and expanded to a subgraph query by iteratively
adding extra constraints based on matches of question content in the path neighborhood (en-
tity mentions or aggregation words). Candidate query subgraphs are scored based on vector
similarity features; vector embeddings of the question and property paths are produced by a
max-pooled CNN (which is pre-trained to produce similar vectors for ClueWeb sentence pairs
containing entities that are linked within Freebase). The features are used for ranking candidate
query subgraphs using lambda-rank. On WebQuestions+Freebase, the system achieves answer
list precision 52.8% and recall 46.6%, with F1 (Berant) 52.5%.

2.2 Unstructured Data QA
When dealing with question answering on top of unstructured data, two research directions
exist: aside of generating a crisp answer, Answer Sentence Selection is a popular sub-task
where instead of the answer, just an appropriate answer-bearing passage is to be returned to
the user.

2.2.1 Dataset and Evaluation
The main benchmarked dataset is a collection of TREC competition datasets from the turn
of the century,8 on top of the AQUAINT newswire corpus; as gold standard, regular expres-
sions matching the answers judged correct were provided. Compared to e.g. WebQuestions +
Freebase, the TREC questions are more realistic in open domain user QA setting — they are

8http://trec.nist.gov/data/qamain.html

10

http://trec.nist.gov/data/qamain.html

diverse in answer type and level of detail and of quite varying difficulty. On the other hand,
naive usage of this dataset hits a few major issues:

• The AQUAINT corpus is not freely available, and some of the questions are dependent
on that time period (like population numbers or persons occupying public positions) or
are highly specific (referring particular individual news articles).

• Regular expressions are limited when matching alternative spellings or name abbrevia-
tions, and almost break down when matching entities such as dates or dimensional quan-
tities (possibly using different units).

• There are no well-defined train/test splits, datasets for individual years significantly vary
in character, and even the years included in summary TREC datasets differ.

Therefore, measurements on TREC are very difficult to compare. Many papers declare that
they subsampled the dataset in arbitrary ways or judged correct answers manually. We attempt
to rectify this situation for future comparisons in Sec. 3.3.1.

The typical IR metrics of MRR and MAP are commonly used, as well as precision, recall
and F1. Notably, since TREC questions are typically single-answer instead of list-based, we
consider a question answered correctly if the top-ranked answer is correct: then, precision is the
proportion of correctly answered questions to all answered questions,9 while recall would be the
proportion of correctly answered questions to all questions altogether — this definition is shared
by e.g. Yao et al. (2013b) and Sun et al. (2015). Ferrucci et al. (2010) uses precision@70% to
denote a proportion of questions that are answered correctly when attempting to answer 70%
of questions.10

TREC competitions used MRR (Voorhees et al., 1999; Voorhees and Tice, 2000, 2001),
confidence-weighted score 1/Q

∑Q
i=1 precision-at-i/i (Voorhees, 2002), as well as requiring only

single answer returned and computing simple accuracy (Voorhees, 2003).
Many unstructured QA systems are primarily IR machines that follow an overproduce-

and-choose answer production strategy. To measure the answer production performance, Chu-
Carroll et al. (2012) uses candidate binary recall, that is the number of questions where a correct
answer has been generated as a candidate for scoring; we also use this measure, but prefer the
term answer production (AP) recall.

2.2.2 Answer Sentence Selection
The task of answer sentence selection aims, given a set of passages, to identify those that answer
the question — i.e. bear the answer, but ideally also in the proper context. This may be regarded
as a binary classification or ranking problem, and the IR measures MRR (when we just want
to position such a sentence as high as possible) and MAP (when we seek to identify all answer
bearing sentences) are appropriate. A reference dataset based on the TREC questions has been
established by Wang et al. (2007).

In our work, we prefer to focus on returning crisp answers. Even in such a system, a
component performing answer sentence ranking is useful as part of the IR chain and feature
provider, nevertheless we do not go into much detail in this survey, and instead refer the

9Except some outliers; Schlaefer et al. (2006) uses the “precision” term to denote AP recall.
10The original papers do not use the percent sign, which we introduce to distinguish from prec@1 (Bordes et al.,

2014).

11

reader to http://aclweb.org/aclwiki/index.php?title=Question_Answering_%28State_
of_the_art%29 which contains an overview of various approaches. We just pick two example
systems below, the second one being state-of-art.

Answer Extraction as Sequence Tagging with Tree Edit Distance (Jacana) (Yao
et al., 2013b) uses logistic regression for binary classification of relevant sentences. The core
features are determined by aligning parse trees of the question and each candidate sentence and
building a tree edit script. TREC MAP 0.631, MRR 0.748.

Deep Learning for Answer Sentence Selection (Yu et al., 2014) estimates, given vector
embeddings q,a, P (rel|q, a) = σ(qTM a + b) i.e. trains a model with parameters M, b that
generates a likely question embedding using M a and then using dot-product measures its
distance to the posed question. Cross entropy over all QA pairs is used as the loss function
for training. Off-the-shelf d = 50 distributed representations are used as word embeddings. To
generate compositional embeddings, a simple unigram model that averages the embeddings is
the baseline; as a small (∆0.02) improvement, bigram model is proposed that uses a CNN on the
sentence with a bigram convolutional layer and an average-pooling layer. To deal with numbers
and proper nouns, a token co-occurrence counter feature is also used; the learnt method gives
∆0.125 against this baseline. TREC MAP 0.7113, MRR 0.7846.

2.2.3 Precise Answer Production
In the era when the classic TREC QA track was active, systems with large amount of handcraft
Harabagiu et al. (2003) or wrapping a web search engine Brill et al. (2002) dominated (making
results difficult or laborious to reproduce, and with sometimes limited scientific value). Let us
cover at least a few most interesting recent systems, even though straight evaluation comparison
is not possible.

First, the classic QA system OpenEphyra (Schlaefer et al., 2006) is the best known open
source QA system. It operates on the basis of fixed question categories with hand-crafted rules,
and puts emphasis on querying web search engines.

Automatic Coupling of Answer Extraction and Information Retrieval (Jacana)
(Yao et al., 2013a) couples the answer sentence selection and extraction of Yao et al. (2013b)
described above with IR query mechanism that constructs queries which prefer results that
would match highest-weighed QA features in the followup pipeline stages. F1 on MIT99 (200-
question subset of TREC) is 23.1%

Open Domain Question Answering via Semantic Enrichment (QuASE) (Sun et al.,
2015) is a web-based QA system that links question entities to Freebase concepts to generate
extra features for answers. One feature is the cosine similarity of word vectors corresponding to
question (and web-fetched question support) and answer’s textual propreties (like description)
in Freebase (N.B. word frequency vectors, not distributed representations). Another feature is
probabilistic type matching by bag of words Bayes model with Perplexity. Generative mixture
model with Dirichlet priors is used for answer scoring. Compared to naive web search baseline,
TREC F1 improvement was 3.5%. (Absolute numbers are not comparable due to sub-sampling
and re-evaluation.)

2.2.4 Non-TREC QA
Of course, question answering may diverge from the standard TREC setting of brief answers to
short English language questions. There are no well-established datasets, so we do not survey

12

http://aclweb.org/aclwiki/index.php?title=Question_Answering_%28State_of_the_art%29
http://aclweb.org/aclwiki/index.php?title=Question_Answering_%28State_of_the_art%29

this in detail, but we still mention at least two examples.
Jeopardy! statements are short declarative sentences that substitute the entity in question

with its type. The task of identifying the entities has gained fame as tackled by the IBM
Watson DeepQA (Ferrucci et al., 2010; Ferrucci, 2012). It uses a pipeline architecture lever-
aging a wide array of strategies (including information extraction to build some structured KBs
(Wang et al., 2012)) and large manual rulesets. However, it also pioneered important conceptual
improvements:

• Specific structure and titling of Wikipedia articles is leveraged as high quality data source.
(Chu-Carroll et al., 2012)

• Aside of having a fixed taxonomy for question/answer types, these are described by Lexical
Answer Types (LATs) as arbitrary English words and flexible Type Coercion methods
determine answer compatibility. (Murdock et al., 2012)

• The answers are evaluated in multiple successively focused phases with additional expen-
sive evidence gathered only for top answers. (Gondek et al., 2012)

Another QA system on Jeopardy! questions is WatsonSim (Gallagher et al., 2014) (open
source).

Another QA-like task is the Quiz Bowl problem, where a sequence of declarative sentences
describe some entity, starting from obscure facts and progressing to more obvious identifications.
QANTA (Iyyer et al., 2014) pioneered usage of TreeRNN-based compound vector embedding
models to align vector embeddings of the entities and the sentences describing them.

We must also mention that modern personal assistants like Siri and Cortana include some
form of question answering. Many of the common questions in TREC and WebQuestions are
also answerable by the Wolfram Alpha engine, as well as the QA component of Google Search
(where an actual answer appears, not just relevant search results). Performance of these systems
on any well known dataset has not been published to our knowledge, though.

2.3 Auxiliary Tasks in QA
2.3.1 Question Classification
In datasets which ask mostly uniform types of answers (e.g. WebQuestions, where the answer
is always an entity), it may be possible to use the same set of features to produce and score
answers across all questions. However, e.g. in the TREC dataset, types of answers vary widely
and different strategies might be appropriate (even if they are to be machine learned rather
than hardcoded, as was common in the early systems).

One approach is to classify an answer to a fixed set of categories. A two-level (coarse,
fine) taxonomy based on the TREC set of questions and a labelled dataset11 was introduced by
Learning question classifiers (Li and Roth, 2002). They set a baseline of coarse P1 = 91.0%,
fine P1 = 84.2%.

This sentence classification problem has been one of the standard benchmarks for semantic
NLP tasks; a few systems are listed in Fig. 2.2. (Zhao et al., 2015) has more references; note
that even primitive baseline would have performance 85%.

11http://cogcomp.cs.illinois.edu/Data/QA/QC/

13

http://cogcomp.cs.illinois.edu/Data/QA/QC/

Approach Coarse P1

SVMS (Silva et al., 2011) 95.0%
DCNN (Kalchbrenner et al., 2014) 93.0%

CNN (Kim, 2014) 93.6%
Skip-Thought (Kiros et al., 2015) 92.2%

AdaSent (Zhao et al., 2015) 92.6%
Figure 2.2: Selected evaluation results for question classification.

A different approach that was introduced by IBM Watson DeepQA (Murdock et al., 2012)
associates the question with a Lexical Answer Type (LAT) which is an arbitrary English word
that would describe the answer concept (e.g. “inventor” or “length”).

2.3.2 Answers by Paraphrasing
Many questions ask essentially for a paraphrase of the term under question — for example,
the question “Who is a plumber?” wants to find out a description of plumber without using
these words, while “What is the capital of Christians?” may seek the paraphrase of capital of
Christians, aside of database lookups.

Learning to Understand Phrases by Embedding the Dictionary (DefGen) (Hill
et al., 2015) is solving the tasks of reverse dictionary and QA on crossword puzzles using
word2vec with composing via RNN or an averaging baseline, embeddings of concepts are pre-
trained from wikipedia intros and wordnet definitions.

2.4 Hybrid QA Systems
Full-scale end-to-end systems combine structured and unstructured knowledge bases and com-
bine a variety of approaches.

DeepQA IBM Watson (Ferrucci et al., 2010) uses a common pipeline for processing ques-
tions, in particular with common question analysis and answer analysis and scoring components,
only using the different paradigms in answer production stage. YodaQA: A Modular Ques-
tion Answering System Pipeline (Baudiš, 2015b) which is also described in Ch. 3 largely
follows these ideas, reimplementing them within an open source framework from scratch.

OpenQA (Marx, 2014) is conversely more of a portfolio-style engine with mostly indepen-
dent pipelines which have their candidate answers combined, rather than emphasizing modular-
ity on the pipeline stage level (with e.g. all answer producers sharing a common answer analysis
stage) as YodaQA does.

2.5 Non-Factoid QA
Some questions are not meant to be answered by factoids. One special case are yes/no questions
— but these can be transformed to similar queries as factoid questions if they have factoid
content (e.g. whether person X was born at place Y).

However, in general the prevailing non-factoid scenario is that the system is given a text
snippet and questions about the specific content of the text snippet. Examples include entrance

14

exams,12 TERENCE child therapy snippets13 or the Toy Tasks set (Weston et al., 2015).Instead
of knowledge base retrieval, the system has to infer the answer from the text snippet. These
tasks are typically solved by systems for Recognizing Textual Entailment14 or, lately, Memory
Neural Networks (Weston et al., 2014).

As another example, in the Cloze procedure scenario (Taylor, 1953), we consider a (context, query)
pair where the query sentence is entailed by the context, but a single entity name in the query is
missing (e.g. in a context detailing an incident of the well-known personality Jeremy Clarkson,
we are to find X for the query Producer X will not press charges against Jeremy Clarkson, his
lawyer says.). Teaching Machines to Read and Comprehend (Hermann et al., 2015) is an
attention-based model that produces vector embeddings of (document, query) pairs and uses a
weight matrix to judge probability of a particular word being the answer based on the compos-
ite pair embedding; the paper is not clear on the particulars, unfortunately. Three composite
vector embedding models are considered, based on bi-directional LSTM and convolution-ish
architectures.

2.6 Vector Embeddings of Words
Recent progress in NLP has been marked mainly by the proliferation of so-called vector em-
beddings, the most popular being called word2vec. (Mikolov et al., 2013b) This approach stems
from the so-called distributional semantics hypothesis, which posits that we can derive meanings
of words purely from the context they tend to appear in. Therefore, each word is associated
with a list of n real numbers (i.e. coordinates of an n-dimensional vector) and these numbers
are derived automatically just from the context the words appear in.15

Figure 2.3: Semantic relationships between words as arrows in the vector space. (Mikolov et al.,
2013c)

A popularly shown interesting property is that the automatically assigned numbers exhibit
semantic properties in how they relate between words. For example, if we do arithmetics
on these word vectors and try to compute e.g. king + (woman − man), the nearest vector
we reach is queen, i.e. the gender transition is represented by an arrow in our vector space

12http://nlp.uned.es/entrance-exams/
13http://datahub.io/dataset/terence-reading-comprehension-dataset
14http://www.aclweb.org/aclwiki/index.php?title=Recognizing_Textual_Entailment
15The word2vec method uses multi-task learning — the n real numbers come out from training a classifier that

predicts the most likely next words to come given a context of (say, 100) preceding words; this so-called language
model task is useful e.g. in speech recognition or OCR.

15

http://nlp.uned.es/entrance-exams/
http://datahub.io/dataset/terence-reading-comprehension-dataset
http://www.aclweb.org/aclwiki/index.php?title=Recognizing_Textual_Entailment

(Fig. 2.3). Fig. 2.4 shows how relationships between adjectives are represented while Fig. 2.5
shows mappings between coordinates of countries and their capitals. Let us emphasize again that
these coordinates were determined purely based on the context of the words (in Wikipedia or
millions of news articles); the system did not have any extra information or databases available.

A lot of the current research focuses on the best ways to build up vector representations of
whole sentences and documents — ranging from simple averaging (Kim, 2014; Hill et al., 2015)
(successful baselines) to recurrent neural networks (Bahdanau et al., 2014; Vinyals et al., 2014).
Many applications that rely on semantic understanding of word nuances are popping up; this
method became state-of-art for machine translation (Bahdanau et al., 2014), automatic image
captioning (Vinyals et al., 2014) and specific types of question answering (Iyyer et al., 2014;
Hill et al., 2015; Hermann et al., 2015)16. One open problem is efficient composition of vector
embeddings for common words with entities like numbers or proper names, or for complex
sentences which might require segmentation.

16The demo at http://45.55.181.170/defgen/ is nice.

16

http://45.55.181.170/defgen/

Figure 2.4: Semantic relationships between superlative adjectives as represented in the vector
space. This is a 2D projection of the high-dimensional space that is designed to well preserve
relative positions of the shown entities (so-called t-SNE 2D). (Pennington et al., 2014)

Figure 2.5: Mappings between countries and capitals, acquired entirely from the typical context
of the respective words. This is again a 2D projection of the high-dimensional space, this time
obtained by a PCA dimensionality reduction technique. (Mikolov et al., 2013a)

17

Chapter 3

The YodaQA System

My work on Question Answering so far has focused largely on building a new open source QA
platform that is sufficiently generic and modular, features modern architecture and can serve
both as scientific research testbed and a practical system. The outcome of this work is the
YodaQA system.1 (Baudiš, 2015b,a)

3.1 YodaQA Pipeline Architecture
The QA task is implemented in YodaQA as a pipeline that transforms the question to a set of
answers by applying a variety of analysis engines and annotators. It is composed from largely
independent modules, allowing easy extension with better algorithms or novel approaches, while
as a fundamental principle all modules share a common end-to-end pipeline. The pipeline is
implemented in Java

The YodaQA pipeline is implemented mainly in Java, using the Apache UIMA framework.
(Ferrucci and Lally, 2004) YodaQA represents each artifact as a separate UIMA CAS, allowing
easy parallelization and straightforward leverage of pre-existing NLP UIMA components; as a
corollary, we compartmentalize different tasks to interchangeable UIMA annotators. Extensive
support tooling is included within the package.

The framework is split in several Java packages: io package takes care of retrieving ques-
tions and returning answers, pipeline contains classes of the general pipeline stages, analysis
contains algorithms for the particular analysis steps, provider has interfaces to various external
resources and flow carries UIMA helper classes and a web interface dashboard.

The system maps an input question to ordered list of answer candidates in a pipeline fashion,
with the flow as in Fig. 3.1, encompassing the following stages:

• Question Analysis extracts natural language features from the input and produces in-
system representations of the question.

• Answer Production generates a set of candidate answers based on the question, by
performing a Primary Search in the knowledge bases according to the question clues
and either directly using the results as candidate answers or selecting the relevant passages
(the Passage Extraction) and generate candidate answers from these (the Passage
Analysis).

1Available open source at https://github.com/brmson/yodaqa under the Apache Software Licence 2.0.

18

https://github.com/brmson/yodaqa

Question Analysis

Answer MergingAnswer Analysis

Answer Scoring

Answer Production

Figure 3.1: The general architecture of the YodaQA pipeline. Present but unused final pipeline
portions not shown.

• Answer Analysis generates answer features based on detailed analysis (most impor-
tantly, lexical type determination and coercion to question type).

• Answer Merging and Scoring consolidates the set of answers, removing duplicates and
using a machine learned classifier to score answers by their features.

• Successive Refining (optional) prunes the set of questions in multiple phases, interject-
ing some extra tasks (evidence diffusion and gathering additional evidence).2

The basic pipeline flow is much inspired by the DeepQA model of IBM Watson (Epstein
et al., 2012). Throughout the flow, answer features are gradually accumulated and some results
of early flow stages (especially the question analysis) are carried through the rest of the flow.

3.2 YodaQA Reference Pipeline
The reference pipeline currently considers an English-language task as outlined in the Introduc-
tion — answering open domain factoid questions, producing a narrowly phrased answer. We
base the answers on information retrieval from both unstructured (English Wikipedia — enwiki)
and structured (DBpedia (Lehmann et al., 2014), Freebase (Bollacker et al., 2008)) knowledge
bases.

In our pipeline, we build on existing third-party NLP analysis tools, in particular Stanford
CoreNLP (Segmenter, POS-Tagger, Parser) (Manning et al., 2014) (Chen and Manning, 2014),
OpenNLP (Segmenter, NER) (Baldridge) and LanguageTool (Segmenter, Lemmatizer).34 NLP
analysis backends are freely interchangeable thanks to the DKPro UIMA interface (de Castilho
and Gurevych, 2014). For semantic analysis, we also rely heavily on the WordNet lexicon
(Miller, 1995).

Our key design rule is avoidance of hand-crafted rules and heuristics, instead relying just on
fully-learned universal mechanisms; we use just about 10 hard-coded rules at this point, mostly
in question analysis.

2We do not include Successive Refining in our evaluation or include further details as it is not beneficial in
our current setup.

3http://www.languagetool.org/
4Sometimes, different pipeline components default to different NLP backends to perform the same task, e.g.

segmentation, based on empirically determined best fit.

19

http://www.languagetool.org/

3.2.1 Question Analysis
The question analysis (Fig. 3.2) involves producing a part-of-speech tagging and dependency
parse of the question text, recognizing named entities and performing entity linking5 to concepts
(as represented by enwiki articles). The question representation we produce is similar in spirit
to DeepQA (Lally et al., 2012): a bag-of-features including a set of clues (keywords, keyphrases
and linked concepts), possible lexical answer types and the selection verb.

Clues represent keywords in the question that determine its content and are used to query
for candidate answers. Clues based on different question components are assigned different
weight (used in search retrieval and passage extraction, determined empirically) — in ascending
other, all noun phrases, noun tokens and the selection verb (SV); the LAT (see below); named
entities and matched concepts; the question sentence subject (determined by dependency parse).

Focus is the center point of the question sentence indicating the queried object. Six sim-
ple hand-crafted heuristics extract the focus based on the dependency parse. “name of —”
constructions are traversed.

LAT (Lexical Answer Type) describes a type of the answer that would fit the question. This
type is not of a pre-defined category but may be an arbitrary English noun, like in the DeepQA
system. (Murdock et al., 2012) The LAT is derived from the focus, except question words are
mapped to nouns (“where” to “location”, etc.) and adverbs (like “hot”) are nominalized (to
“temperature”) using WordNet relations.

SV (Selection Verb) represents the coordinating verb of the question that selects the answer
with regard to other clues (like “born”, “received”, etc.)

3.2.2 Unstructured Knowledge Bases
The primary source of answers in our QA system is keyword search in free-text knowledge base
(the enwiki in our default setting). While the knowledge base has no formal structure, we
take advantage of the organization of the enwiki corpus where entity descriptions are stored
in articles that bear the entity name as title and the first sentence is typically an informative
short description of the entity. Our search strategies are analogous to basic DeepQA free-text
information retrieval methods (Chu-Carroll et al., 2012). We use the Apache Solr6 search engine
(frontend to Apache Lucene). They are shown as the non-highlighted components in Fig. 3.3.

Title-in-clue search (Chu-Carroll et al., 2012) looks for the question clues in the article
titles, essentially aiming to find articles that describe the concepts touched in the question. The
first sentences of the top six articles (which we assume is its summary) are then used in passage
analysis (see below).

Full-text search (Chu-Carroll et al., 2012) runs a full-text clue search in the article texts
and titles, considering the top six results. The document texts are split to sentences which
are treated as separate passages and scored based on sum of weights of clues occuring in each
passage78; the top three passages from each document are picked for passage analysis.

Document search (Chu-Carroll et al., 2012) runs a full-text clue search in the article texts;
top 20 article hits are then taken as potential responses, represented as candidate answers by

5Right now, entities are linked just by an exact match of the main or alias label.
6http://lucene.apache.org/solr/
7The about-clues which occur in the document title have their weight divided by four (as determined empiri-

cally).
8We also carry an infrastructure for machine learning models scoring candidate passages, but they have not

been improving performance so far.

20

http://lucene.apache.org/solr/

their titles.
Concept search retrieves articles that have been linked to entities mentioned in the ques-

tion. The first sentence as well as passages extracted like in the full-text search are used for
passage analysis.

Given a picked passage, the passage analysis process executes an NLP pipeline and gener-
ates candidate answers; currently, the answer extraction strategy entails simply converting all
named entities and noun phrases to candidate answers. Also, object constituents in sentences
where subject is the question LAT are converted to candidate answers.

In addition, we implement an enhanced answer production strategy (inspired by the Jacana
QA system) that approaches the problem of identifying the answer in a text passage in a way
similar to named entity recognition: as a (token) sequence tagging (by begin-inside-outside
labels) that uses the conditional random field model to predict labels. (Yao et al., 2013b)
However, we use a significantly simplified feature set: just part-of-speech tags, named entity
labels and dependency labels as token sequence unigrams, bigrams and trigrams.

3.2.3 Structured Knowledge Bases
Aside of full-text search, we also employ structured knowledge bases organized in RDF triples; in
particular, we query the DBpedia ontology (curated) and property (raw infobox) namespaces
and the Freebase RDF dump. They are shown as the highlighted components in Fig. 3.3.

For each concept linked to an in-question entity, we query for predicates with this concept
as a subject9 and generate candidate answers for each object in such a triple, with the predicate
label seeded as one LAT of the answer.

Furthermore, we have trained a multi-label classifier (logistic regression) that predicts prop-
erty paths likely connecting an identified in-question concept with the answer in the knowledge
base graph based on particular words in question representation. (Yao, 2015) Howeve, we con-
sider long property paths (similar to the core inferential chain of STAGG (Chang and Gao,
2015)) as Freebase is organized such that finding related concepts often requires traversing
intermediate nodes representing relationshibs (e.g. siblinghood); we also do not consider all
unigrams and bigrams but just the LATs and SVs.

3.2.4 Answer Analysis
In the answer analysis, the system takes a closer look at the answer snippet and generates
numerous features for each answer. The dominant task here is type coercion, i.e. checking
whether the answer type matches the question LAT.

The answer LAT is produced by multiple strategies:

• Answers generated by a named entity recognizer have LAT corresponding to the trig-
gering model; we use stock OpenNLP NER models date, location, money, organization,
percentage, person and time.

• Answers containing a number have a generic quantity LAT generated.

• Answer focuses (the parse tree roots) are looked up in WordNet and instance-of pairs are
used to generate LATs (e.g. Einstein is instance-of scientist).

9All our knowledge bases are linked to enwiki.

21

• Answer focuses are looked up in DBpedia and its ontology is used to generate LATs.

• Answers originating from a structured knowledge base carry the property name as an
LAT.

Type coercion between question and answer LATs is performed using the WordNet hyper-
nymy relation — i.e. scientist may be generalized to person, or length to quantity. We term the
type coercion score WordNet specificity and exponentially decrease it with the number of hy-
pernymy traversals required. Answer LATs coming from named entity recognizer and quantity
are not generalized. We never generalize further once within the noun.Tops WordNet domain
and based on past behavior analysis, we have manually compiled a further blacklist of WordNet
synsets that are never accepted as coercing generalizations (e.g. trait or social group).

The generated features describe the origin of the answer (data source, search result score,
clues of which type matched in the passage, distance-based score of adjacent clue occurences,
etc.), syntactic overlaps with question clues and type coercion scores (what kind of LATs have
been generated, if any type coercion succeeded, what is the WordNet specificity and whether
either LAT had to be generalized).

3.2.5 Answer Merge-and-Score
The merging and scoring process also basically follows a simplified DeepQA approach (Gondek
et al., 2012). Candidate answers of the same text (up to basic normalization, like the- removal)
are merged; element-wise maximum is taken as the resulting answer feature vector (except for
the #occurences feature, where a sum is taken). To reduce overfitting, too rare features are
excluded (when they occur in less than 1% questions and 0.1% answers).

Supplementary features are produced for each logical feature — aside of the original value, a
binary feature denoting whether a feature has not been generated and a value normalized over
the full set of answers so that the distribution of the feature values over the answer has mean
0 and standard deviation 1. The extended feature vectors are converted to a score s ∈ [0, 1]
using a logistic regression classifier.10 The weight vector is trained on the gold standard of
a training dataset, employing L2 regularization objective. To strike a good precision-recall
balance, positive answers (which are about p = 0.03 portion of the total) are weighed by 0.5/p.

3.2.6 Successive Refining
The pipeline contains support for additional refining and scoring phases. By default, after initial
answer scoring, only the top 25 answers are kept with the intent of reducing noise for the next
answer scoring classifier. Answers are compared and those overlapping syntactically (prefix,
suffix, or substring aligned with sub-phrase boundaries) are subject to evidence diffusion where
their scores are used as features of the overlapping answers. Another answer scoring would be
then performed, and the answer with the highest score is then finally output by the system.11

However, while we have found these extra scoring steps beneficial with weaker pipelines (in
particular without the clue overlap features), in the final pipeline configuration the re-scoring

10An alternative gradient-boosted decision forest classifier is also available, but it is not beneficial in the default
evaluation scenario yet.

11There is also experimental support for additional evidence gathering phase, where the top 5 answers are
looked up using the full-text search together with the question clues, and the number and score of hits are used
as additional answer features and final answer rescoring is performed. Nevertheless, we have not found this
approach effective.

22

triggers significant overfitting on the training set and we therefore ignore the successive refining
stage in the benchmarked pipeline.

3.3 Results
As we present evaluation of our system, we shall first detail our experimental setup; this also
includes discussion of our question dataset.

Then, we proceed with the actual results — we measure the AP recall of the system (recall
of the Answer Production component — whether a correct answer has been generated and
considered, without regard to its score) and precision@1 (whether the correct answer has been
returned as the top answer by the system). We find this preferrable to typical information
retrieval measures like MRR or MAP since in many applications, eventually only the single top
answer output by the system matters; however, we also show the mean reciprocial rank for each
configuration and discuss the rank distribution of correct answers. These measures are further
described in Ch. 2.

Aside of the performance of the default configuration, we also discuss scaling of the system
(extending the alotted answer time) and performance impact of its various components (hold-out
testing).

3.3.1 Experimental Setup
Our code is version tracked in a public GitHub repository https://github.com/brmson/
yodaqa, and the experiments presented here are based on tag v1.2. The quality of full-text
search is co-determined by Solr version (we use 4.6.0) and models of the various NLP com-
ponents which are brought in by DKPro version 1.7.0. As for the knowledge bases, we use
enwiki-20150112, DBpedia 2014, Freebase RDF dump from Jan 11 2015, and WordNet 3.1.
Detailed instructions on setting up the same state locally (including download of the particular
dump versions and configuration files) are distributed along the source code.

An automatic benchmark evaluation system is distributed as part of the YodaQA software
package. The system evaluates the training and test questions in parallel and re-trains the ma-
chine learning models before scoring the answers. Therefore, in all the modified system versions
considered below, a model trained specifically for that version is used for scoring answers.

Our benchmark is influenced by two sources of noise. First, the answer correctness is de-
termined automatically by matching a predefined regex, but this may yield both false positives
and false negatives.12 Second, during training the models are randomly initialized and therefore
their final performance on a testing set flutters a little.

As a main benchmark of the system performance, we use a dataset of 430 training and 430
testing open domain factoid questions. (For system development, exclusively questions from
the training set are used.) This dataset is based on the public question answering benchmark
from the main tasks of the TREC 2001 and 2002 QA tracks with regular expression answer
patterns13 and extended by questions asked to a YodaQA predecessor by internet users via
an IRC interface. This dataset was further manually reviewed by the author, ambiguous or
outdated questions were removed and the regex patterns were updated based on current data.

12For example numerical quantities with varying formatting and units are notoriously tricky to match by a
regular expression.

13http://trec.nist.gov/data/qa/2001_qadata/main_task.html and 2002 analogically.

23

https://github.com/brmson/yodaqa
https://github.com/brmson/yodaqa
http://trec.nist.gov/data/qa/2001_qadata/main_task.html

We refer to the resulting 867 question dataset as curated and randomly split it to the training
and testing sets.14

To further facilitate comparison of YodaQA to other systems, we also benchmark its perfor-
mance on the (i) original, unrevised and unabridged TREC datasets (even though the train/test
splits might not be entirely compatible), and (ii) the WebQuestions dataset (Berant et al., 2013)
(which represents several thousands of open domain factoid questions tied to Freebase, popular
as a semantic parsing benchmark).

3.3.2 System Evaluation
Evaluation over various pipeline configurations are laid out in Fig. 3.4. Aside of the general per-
formance of the system, it is instructive to look at the histogram of answer ranks for the default
pipeline, shown in Fig. 3.5. We can observe that while precision@1 is 31.4%, precision@515 is
already at 50% of test questions.

The information retrieval parameters of the default pipeline are selected so that answering
a question takes about 10s on average on a single core of AMD FX-8350 with 24GB RAM and
SSD backed databases.16 By raising the limiting parameters, we can observe further AP recall
increase and a solid precision improvement. Our system could therefore meaningfully make use
of further computing resources.

We also benchmarked accuracy with various components of the pipeline disabled. We can
see that the full-text and structured knowledge bases are complementary to a degree, but the
full-text base is eventually a much stronger answer source for our system on the open domain
factoid questions of the curated dataset. The “answer typing” hold-out represents suppression
of external resources (Wordnet, DBpedia) when guessing answer types. We can see that entity
linking in the question is also an important heuristic for our QA system.

3.3.3 Comparison to Other Systems
In Fig. 3.6, we compare various performance measures with the most relevant previously pub-
lished systems on the TREC dataset, as reported in the respective papers, with ours bench-
marked on non-curated version of the TREC 2002, 2003 dataset test split. This comparison has
numerous caveats, though, as explained within the table. Our system has AP recall 60.9% on
this dataset.

In Fig. 3.7, we compare ourselves with other published systems on the WebQuestions dataset
(test split), as reported in their respective papers. We limit our system to use only structured
KBs. Our system has AP recall 78.3% and MRR 0.431 on this dataset.

3.4 Datasets and Other Work
As part of our work, we published several other outputs besides the YodaQA system itself:

• The curated TREC-based dataset of factoid questions described above.17

14The remaining 7 questions are left unused for now.
15Proportion of questions where the correct answer is ranked in top five.
16Note that no computation pre-processing was done on the knowledge bases or datasets; bulk of the time per

question is therefore spent querying the search engine and parsing sentences, making it an accurate representation
of time spent on previously unseen questions.

17https://github.com/brmson/dataset-factoid-curated

24

https://github.com/brmson/dataset-factoid-curated

• The webquestions dataset that contains WebQuestions dataset in a more convenient
format for further processing and automatically annotated by other data such as property
paths between questions and answers.18

• The movies dataset that contains WebQuestions-based dataset for the movie domain,
combined with questions based on web user input and feedback on an earlier version of
YodaQA.19 Made available in cooperation with Nguyen Hoang Long.

• A standalone label-lookup service for fuzzy lookup of labels in corpora.20 Co-authored
with Nguyen Hoang Long. (A fast Levenshtein distance based lookup library DAWG21 is
a work in progress, primarily authored by Tomáš Veselý.)

• A tool for evaluating the Google QA subsystem.22 Primarily authored by Nguyen Hoang
Long.

18https://github.com/brmson/dataset-factoid-webquestions
19https://github.com/brmson/dataset-factoid-movies
20https://github.com/brmson/label-lookup
21https://github.com/brmson/dawg-levenshtein
22https://github.com/brmson/google-qa

25

https://github.com/brmson/dataset-factoid-webquestions
https://github.com/brmson/dataset-factoid-movies
https://github.com/brmson/label-lookup
https://github.com/brmson/dawg-levenshtein
https://github.com/brmson/google-qa

NLP Processing

Fuzzy Search in DBpedia

LAT Identification,
Expansion

Clue Generation,
Merging

LAT

Concepts

Clues

Focus

Noun Phrases

Named Entities

Noun Phrases

Nouns, Verbs, NEs

Figure 3.2: The general organization of the Question Analysis.

Question Analysis

Answer Analysis

Full-text Search

Title Text Search

Document Search

Structured Search

Passage ExtractionPassage Analysis

Primary Search

Answer Producers

Figure 3.3: The general organization of the Answer Producer component — multiple strategies
that generate large amount of answer hypotheses.

26

Pipeline AP Recall Prec@1 MRR

default 77.2% 31.4% 0.409
full-text scaling (6 → 12 fetched results) 80.0% 35.3% 0.440

enwiki KB hold-out 42.1% 19.8% 0.253
structured KB hold-out 70.7% 28.8% 0.378
answer typing hold-out 77.2% 30.7% 0.394
concept clues hold-out 68.1% 22.3% 0.318

Figure 3.4: Benchmark results of various pipeline variants on the curated test dataset. MRR is
the Mean Reciprocal Rank |Q| ·

∑
q∈Q 1/rq.

1

3

5

10

25

50

100

200

A
n
sw

er
R
a
n
k
(a
t
le
a
st
)

142 198215 256 331

#Questions

Correct Answer Ranks

Figure 3.5: Number of questions x that output the correct answer ranked at least y.

System Precision@1 F1 MRR
LLCpass03 (Harabagiu et al., 2003) (hand-crafted system) 68.5% — —

AskMSR (Brill et al., 2002) (web-search system) 61.4% — 0.507
OpenEphyra (Schlaefer et al., 2006) (hand-crafted OSS) “above 25%” — —
JacanaIR (Yao et al., 2013a) (modern fully-learned OSS) — 23.1%∗ —

OQA (Fader et al., 2014) (modern fully-learned OSS) — 29%∗∗ —
YodaQA v1.1 26.4% 26.4% 0.325

Figure 3.6: Benchmark results of some relevant systems on the unmodified TREC dataset.
∗ MIT99 subset; ∗∗ sub-sampled dataset with manual evaluation

System F1@1 F1 (Berant)
Sempre 35.7% 35.7%

JacanaFB 35.4% 33.0%
YodaQA v1.1 34.3% —

STAGG (state-of-art) — 52.5%
Figure 3.7: Benchmark results of som relevant systems on the WebQuestions dataset. See also
Sec. 2.1.

27

Chapter 4

Future Work

Ultimately, the goal of building a Question Answering system would be a machine that can
answer any kind of question a human could (or more). But given the current state of art, I
propose to consider this out of scope as a doctoral thesis topic. Instead, I shall propose two
particular real world QA scenarios that are inspired by real world applications. Equipped with
this vision and a baseline system of my own making, I shall consider the scientific questions
that we need to answer in order to do well in these scenarios. I want to propose answering some
of these questions to be the major focus of my thesis.

The first scenario involves answering movie questions about metadata of films and TV
series (credits, characters, dates, awards, etc.). This represents a proxy for answering questions
about product or company databases and many other business tasks. The domain is closed,
but familiar to most users and with readily available knowledge bases. We already collected few
hundred movie related questions as a dataset and are working on YodaQA version for answering
movie questions.1

The second scenario aims to answer prospectus questions about contents of an isolated
document like a product page, real estate offer or a usage manual. Unlike non-factoid QA
(Sec. 2.5), the focus of this task is not answering logical riddles or following through with a
story, but rather entity recognition and relationship extraction.

Both my proposals aim at realistic user interaction, which brings in the first question —
How to link question keywords to appropriate concepts? That is, building a dataset
and highly accurate solution for entity linking. Preliminary results on the movies dataset show
that spelling mismatches (both typos and interpunction variants) as well as disambiguation
issues (linking “Hobbit” to the best concept depending on question, or identifying that “the
first time” might not be a movie reference) are non-trivial problems. Yao (2015) agrees that the
current datasets like WebQuestions do not strain this issue realistically. Some aspects (like fast
fuzzy searches) are mostly of engineering interest, but an example of semantically interesting
scientific problem here is a general mechanism to prefer certain classes of concepts based on
context, say movie instances of “The Hobbit” when asked about a director. A baseline idea
(slightly inspired by Sun et al. (2015)) would be to rank concepts based on similarity of vector
embeddings (Sec. 2.6) of the question and of the concept description. We are already in progress
of building an entity linking dataset to properly compare various approaches.

How to map unseen question focuses to knowledge graph edges? The existing
structured QA proposals (as surveyed in Sec. 2.1) rely on seeing each kind of question with

1d/movies branch in the YodaQA Git repository.

28

many variations to infer explicit mappings from in-question words to particular relations in
the knowledge base ontology. In open domain, the long tail of exotic questions would escape
this; in closed domain, amassing a large enough corpus of questions may be tricky. At the
same time, a human operator has no trouble finding the appropriate relation based on its label.
Therefore, seeking a general way to match questions to labels of properties (or even property
paths) seems desirable, instead of simply learning a fixed mapping from individual in-question
words. Again, leveraging an abstract representation of word meanings like vector embeddings
would be promising.

How to pick the source sentences most likely to bear an answer? is an important
question when dealing with question answering on unstructured text corpora. While Sec. 2.2.2
surveys some approaches, our preliminary research has shown that the current reference dataset
is a very problematic benchmark as the test set appears to be much easier than the training set
and realitsic QA setting. Moreover, the current approaches use compound vector embeddings of
sentences, but it is troublesome when the sentences need to be matched based on dates, entity
named and such, as explained below.

How to integrate relation extraction approaches with question answering? is a
research question that would boost the more naive approaches of answer hypothesis generation
by the research in relation extraction (e.g. ReVerb, RelEx, NELL, …). One obvious approach is
to first run general relation extraction on the knowledge corpus, then query such a structured
database. However, I believe that the task of “reading” text with a particular question in
mind makes the task of identifying pertaining relations considerably easier, and features used
to extract a relation would be useful for scoring the answers too. Adapting well-known relation
extraction strategies is a first step, but going further and exploiting synergies with my work on
the other questions, I would like to experiment also with using embedded representation of the
sentences (directly for relation extraction, or, say, as an attention mechanism in the spirit of
Hermann et al. (2015)).

Many of the research questions might be in part answered by vector embeddings of words,
or whole sentences. One reason we emphasize this approach so much is its high reusability
potential: a well developed solution to one problem might help with another one, both on
conceptual level and on the level of actual performance, e.g. applying multi-task learning to
learn a common representation of source artifacts. To get there, we need to ask two important
questions about vector embeddings themselves, though. How to keep the signal level high
and represent complex statements when building compound embeddings? points
out that right now, we do not know how to step from representing short and simple snippets or
well known entities2 to representing complex sentences (like in a typical Wikipedia article) or
rare entities. Moreover, when we are to process sentences that contain numbers (like dates) or
references to entities, we need to answer How to embed or tie arbitrary data in addition
to normal words to compound embeddings? The current state of art does not seem to go
beyond simple hacks like carrying bag-of-tokens along the embeddings and counting intersect
size of that set when classifying relationships between two embeddings (Yu et al., 2014).

2When representing entities, we are thinking about representations built in the spirit of Iyyer et al. (2014).

29

Chapter 5

Conclusion

In this report, I have proposed a doctoral thesis on the topic of factoid question answering. So
far, I have built a question answering system that exhibits performance more than comparable
with well-known baselines and is still rapidly improving. I have also managed to reproduce
state-of-art results in some of the sub-tasks and identified and proposed a few tasks on my own
that are tied to building a state-of-art system in a real-world setting.

In my thesis, apart of describing my system building work, I would like to focus particularly
on research connected to the Information Extraction portion of the system.

As discussed above, vector embeddings are a booming area of semantic NLP research with
their ability to numerically capture meaning nuances, and based on the presented survey of
the field, I believe looking into vector embedding approaches when manipulating natural text
(analyzing the question, understanding answer-bearing passages and relation labels) is a highly
promising area of research. Some scientific problems that I would like to tackle are connected
to the current limitations of vector embeddings themselves. This includes building compound
vector embeddings conveying the meaning of a whole sentence rather than individual words,
and exploring ways to embed or tie named entities, numerical quantities and other arbitrary
data to the conventional embeddings.

Other scientific problems related to Information Extraction that I plan to explore are in
particular testing various relation extraction strategies in the unstructured knowledge base
context and improving performance in this sub-task. My sight is also set at tasks beyond basic
factoid QA like performing basic inference, though it is unclear if it will eventually fall in the
scope of my thesis as well.

However, improving the system performance might lead to interesting results in other parts
of the system, involving Entity Linking, Information Retrieval, Result Ranking etc.

In summary, I would like to propose a thesis studying Semantic Methods in Question
Answering.

5.1 Acknowledgements
I would like to thank my main supervisor Dr. Petr Pošík for his guidance, support, but also
giving me the freedom to eventually take a different direction of scientific pursuit than we
originally planned. I would also like to thank my specialist supervisor Dr. Jan Šedivý for
supporting me in this new topic of research, his result-focused guidance and giving me great
opportunities to boost the development of my system.

30

Appendix A

Portfolio-Based Optimization

The initial focus of my doctoral research was developing algorithm portfolio strategies with
applications particularly in continuous black-box optimization. The results of my work have
been a software framework for experiments (Baudiš, 2013) and two results published at top-tier
conferences (Baudiš and Pošík, 2014, 2015). This research had been primarily supervised by
Dr. Petr Pošík.

Let us consider the problem of finding a minimum value of a continuous real-parameter
function that has inaccessible analytical form.1 This is a rich area of research that produced
many algorithms over the last 50 years — from the venerable Nelder-Mead simplex algorithm
(Nelder and Mead, 1965) to various gradient descent methods to population-based methods.

A.1 Online Black-box Algorithm Portfolios
The key question in the face of such variety of optimization algorithms is “which algorithm
should I choose?” Unified comparison benchmarks (Hansen et al.) can help determining the
best option for a particular function class. However, if a function is truly “black-box” and
its features are hard to predict, an automated process with minimum overhead is certainly
desirable.

The problem of algorithm selection is not new (Rice, 1976) and was so far popular mainly
when applied to combinatorial problem solvers (Kotthoff, 2014). In my work, I adopted the
prism of algorithm portfolios (Gomes and Selman, 2001) with online selection.2 That is, multiple
diverse optimization algorithms are applied to the given function instance simultaneously, with
the best performers quickly gaining the largest time allocation (that is, the chance to perform
the most optimization steps).

Deciding which algorithm to apply in each step of the portfolio optimization is essentialy
an instance of the well-known Multi-Armed Bandit Problem, where a policy decides which
algorithm to try next based on their empirically determined expected reward. I have built a
modular Python framework COCOpf (Baudiš, 2013) suitable both for research and application
of this problem.

1No analytical form implies that we do not have information e.g. on the derivatives of the function, except
approximating them numerically.

2The concept of offline selection also occurs in the literature, when we assume a stream of function instances
and apply just a single algorithm on each of the instances.

31

This helped me to identify fine structure of the problem (particularly, I proposed a classifica-
tion of functions based on their in-portfolio behavior). Further, I have built a reference portfolio
of seven well-known diverse optimization algorithms and based on performance evaluation us-
ing the popular COCO optimization benchmark (Hansen et al.), I have identified a policy that
significantly improves the baseline and on well-behaved functions on average overperforms even
the overally best individual algorithm. This result was presented at the PPSN 2014 conference.
(Baudiš and Pošík, 2014)

A.2 Minimizing Separable Functions by a Mix of Methods
Another tier of research on how to best combine different optimization algorithms concerns
speeding up optimization of continuous black-box separable functions in particular. I have
closely cooperated on this research with my supervisor, Dr. Petr Pošík.

Separable multivariate functions can be decomposed to a sum of univariate functions, each
parametrized solely by a single dimension of the input vector. For some very hard separable
functions, exploiting separability is the only way to quickly find the minimum and a natural idea
to optimize such functions is to use univariate optimization algorithms on individual dimensions.
In (Pošík, 2009), Brent’s method (Brent, 1973) and the STEP algorithm (Langerman et al.,
1994) were used to separately optimize the function along each dimension. Brent’s method was
shown to be fast in case of unimodal functions, but due to its local nature it fails on multimodal
functions. The global STEP method was able to solve both the uni- and multimodal functions,
but needed much larger number of function evaluations. Moreover, their multidimensional
variants were constructed inefficiently: the dimensions were optimized sequentially, one by one.

We have built on the above mentioned methods, and contributed two improvements:

1. We combined Brent’s method and STEP into a single algorithm which converges faster
than STEP (in many cases, it is almost as fast as Brent’s method), while it preserves the
global search ability of STEP (thus solving a larger proportion of functions than Brent’s
method, and often doing it faster).

2. We suggested a better way of making a multidimensional variant of this method. As
opposed to solving the 1D problem in all dimensions sequentially, we proposed to interleave
the steps in individual dimensions, updating the full coordinates of sampled points based
on results obtained in other dimensions so far.3

Thus, we have introduced a new hybrid algorithm “Brent-STEP” combining these two meth-
ods non-trivially and demonstrated that on univariate and separable functions the hybrid algo-
rithm in general outperforms both of them, in the univariate case often by a wide margin, and
that it is behaving robustly even when one of the constituent methods is failing to converge.
This result was presented at the GECCO 2015 conference. (Baudiš and Pošík, 2015)

3Later, we found out about a similar recent work by Ilya Loschilov Loshchilov et al. (2013), but our algorithm
reaches better results.

32

Bibliography

Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. The question answering systems: A
survey. International Journal of Research and Reviews in Information Sciences (IJRRIS), 2
(3), 2012. URL http://aliallam.com/QA%20Survey%20Paper%20(IJRRIS).pdf.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. URL http://arxiv.
org/abs/1409.0473.

Jason Baldridge. The OpenNLP project. http://opennlp.apache.org/.

Junwei Bao, Nan Duan, Ming Zhou, and Tiejun Zhao. Knowledge-based question answer-
ing as machine translation. 2014. URL http://research.microsoft.com/en-US/people/
nanduan/acl2014.pdf.

Hannah Bast and Elmar Haussmann. More accurate question answering on freebase. 2015.
URL http://ad-publications.informatik.uni-freiburg.de/freebase-qa.pdf.

Petr Baudiš and Jan Šedivỳ. Modeling of the question answering task in the yodaqa system.
2015. URL http://ceur-ws.org/Vol-1391/131-CR.pdf.

Petr Baudiš. COCOpf: An algorithm portfolio framework. In Poster 2014 — the 18th Inter-
national Student Conference on Electrical Engineering. Czech Technical University, Prague,
Czech Republic, 2013.

Petr Baudiš. YodaQA: A Modular Question Answering System Pipeline. In Sixth International
Conference of the CLEF Association, CLEF’15, Toulouse, September 8-11, 2015, volume 9283
of LNCS. Springer, 2015a.

Petr Baudiš. YodaQA: A Modular Question Answering System Pipeline. In POSTER 2015
- 19th International Student Conference on Electrical Engineering, 2015b. URL http://
ailao.eu/yodaqa/yodaqa-poster2015.pdf.

Petr Baudiš and Petr Pošík. Online black-box algorithm portfolios for continuous optimization.
In Thomas Bartz-Beielstein, Jürgen Branke, Bogdan Filipič, and Jim Smith, editors, Parallel
Problem Solving from Nature – PPSN XIII, volume 8672 of Lecture Notes in Computer
Science, pages 40–49. Springer International Publishing, 2014. ISBN 978-3-319-10761-5. doi:
10.1007/978-3-319-10762-2_4. URL http://dx.doi.org/10.1007/978-3-319-10762-2_4.

Petr Baudiš and Petr Pošík. Global line search algorithm hybridized with quadratic interpolation
and its extension to separable functions. In Proceedings of the 2015 Conference on Genetic
and Evolutionary Computation, New York, NY, USA, 2015. ACM. Accepted for publication.

33

http://aliallam.com/QA%20Survey%20Paper%20(IJRRIS).pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://opennlp.apache.org/
http://research.microsoft.com/en-US/people/nanduan/acl2014.pdf
http://research.microsoft.com/en-US/people/nanduan/acl2014.pdf
http://ad-publications.informatik.uni-freiburg.de/freebase-qa.pdf
http://ceur-ws.org/Vol-1391/131-CR.pdf
http://ailao.eu/yodaqa/yodaqa-poster2015.pdf
http://ailao.eu/yodaqa/yodaqa-poster2015.pdf
http://dx.doi.org/10.1007/978-3-319-10762-2_4

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. 2014. URL http:
//nlp.stanford.edu/pubs/berant14paraphrasing.pdf.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In EMNLP, pages 1533–1544, 2013. URL http://www.aclweb.
org/anthology/D13-1160.

Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Mirko Orsini, Raquel Trillo Lado, and
Yannis Velegrakis. Keymantic: semantic keyword-based searching in data integration systems.
Proceedings of the VLDB Endowment, 3(1-2):1637–1640, 2010. URL http://disi.unitn.
it/~velgias/docs/BergamaschiDGOLV10.pdf.

Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt Stockinger. Soda:
Generating sql for business users. Proceedings of the VLDB Endowment, 5(10):932–943, 2012.
URL http://arxiv.org/pdf/1207.0134.pdf.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data, pages 1247–1250.
ACM, 2008.

Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with subgraph embed-
dings. arXiv preprint arXiv:1406.3676, 2014. URL http://arxiv.org/pdf/1406.3676.

RP Brent. Algorithms for minimization without derivatives. Prentice-Hall series in automatic
computation, 1973.

Eric Brill, Susan Dumais, and Michele Banko. An analysis of the AskMSR question-answering
system. In Proceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, pages 257–264. Association for Computational Linguistics, 2002.

Qingqing Cai and Alexander Yates. Large-scale semantic parsing via schema matching and
lexicon extension. In ACL (1), pages 423–433, 2013.

Wen-tau Yih Ming-Wei Chang and Xiaodong He Jianfeng Gao. Semantic parsing via staged
query graph generation: Question answering with knowledge base. 2015. URL http://
research.microsoft.com/pubs/244749/ACL15-STAGG.pdf.

Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 740–750, 2014.

Jennifer Chu-Carroll, James Fan, BK Boguraev, David Carmel, Dafna Sheinwald, and Chris
Welty. Finding needles in the haystack: Search and candidate generation. IBM Journal of
Research and Development, 56(3.4):6–1, 2012.

Richard Eckart de Castilho and Iryna Gurevych. A broad-coverage collection of portable nlp
components for building shareable analysis pipelines. In Nancy Ide and Jens Grivolla, editors,
Proceedings of the Workshop on OIAF4HLT at COLING 2014, pages 1–11, Dublin, Ireland,
August 2014. ACL and Dublin City University.

34

http://nlp.stanford.edu/pubs/berant14paraphrasing.pdf
http://nlp.stanford.edu/pubs/berant14paraphrasing.pdf
http://www.aclweb.org/anthology/D13-1160
http://www.aclweb.org/anthology/D13-1160
http://disi.unitn.it/~velgias/docs/BergamaschiDGOLV10.pdf
http://disi.unitn.it/~velgias/docs/BergamaschiDGOLV10.pdf
http://arxiv.org/pdf/1207.0134.pdf
http://arxiv.org/pdf/1406.3676
http://research.microsoft.com/pubs/244749/ACL15-STAGG.pdf
http://research.microsoft.com/pubs/244749/ACL15-STAGG.pdf

Edward A Epstein, Marshall I Schor, BS Iyer, Adam Lally, et al. Making watson fast. IBM
Journal of Research and Development, 56(3.4):15–1, 2012.

Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni. Paraphrase-driven learning for
open question answering. In ACL (1), pages 1608–1618, 2013. URL http://homes.cs.
washington.edu/~afader/bib_pdf/acl13.pdf.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answering over curated
and extracted knowledge bases. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1156–1165. ACM, 2014. URL
http://homes.cs.washington.edu/~lsz/papers/fze-kdd14.pdf.

David Ferrucci and Adam Lally. UIMA: An architectural approach to unstructured infor-
mation processing in the corporate research environment. Nat. Lang. Eng., 10(3-4):327–
348, September 2004. ISSN 1351-3249. doi: 10.1017/S1351324904003523. URL http:
//dx.doi.org/10.1017/S1351324904003523.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A
Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager, et al. Build-
ing watson: An overview of the deepqa project. AI magazine, 31(3):59–79, 2010. URL
http://www.aaai.org/ojs/index.php/aimagazine/article/download/2303/2165.

David A Ferrucci. Introduction to “this is watson”. IBM Journal of Research and Development,
56(3.4):1–1, 2012.

Sean Gallagher, Wlodek Zadrozny, Walid Shalaby, and Adarsh Avadhani. Watsonsim: Overview
of a question answering engine. arXiv preprint arXiv:1412.0879, 2014.

Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1):43–62,
2001.

DC Gondek, Adam Lally, Aditya Kalyanpur, J William Murdock, Pablo Ariel Duboué, Lei
Zhang, et al. A framework for merging and ranking of answers in deepqa. IBM Journal of
Research and Development, 56(3.4):14–1, 2012.

Nikolaus Hansen et al. Comparing continuous optimisers: Coco. http://coco.gforge.inria.
fr/.

Sanda M Harabagiu, Dan I Moldovan, Christine Clark, Mitchell Bowden, John Williams, and
Jeremy Bensley. Answer mining by combining extraction techniques with abductive reasoning.
In TREC, pages 375–382, 2003. URL http://trec.nist.gov/pubs/trec12/papers/lcc.
qa.pdf.

Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. CoRR,
abs/1506.03340, 2015. URL http://arxiv.org/abs/1506.03340.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and Yoshua Bengio. Learning to understand
phrases by embedding the dictionary. CoRR, abs/1504.00548, 2015. URL http://arxiv.
org/abs/1504.00548.

35

http://homes.cs.washington.edu/~afader/bib_pdf/acl13.pdf
http://homes.cs.washington.edu/~afader/bib_pdf/acl13.pdf
http://homes.cs.washington.edu/~lsz/papers/fze-kdd14.pdf
http://dx.doi.org/10.1017/S1351324904003523
http://dx.doi.org/10.1017/S1351324904003523
http://www.aaai.org/ojs/index.php/aimagazine/article/download/2303/2165
http://coco.gforge.inria.fr/
http://coco.gforge.inria.fr/
http://trec.nist.gov/pubs/trec12/papers/lcc.qa.pdf
http://trec.nist.gov/pubs/trec12/papers/lcc.qa.pdf
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1504.00548
http://arxiv.org/abs/1504.00548

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III.
A neural network for factoid question answering over paragraphs. In Empirical Methods in
Natural Language Processing, 2014. URL http://cs.umd.edu/~miyyer/pubs/2014_qb_rnn.
pdf.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for
modelling sentences. arXiv preprint arXiv:1404.2188, 2014. URL http://arxiv.org/abs/
1404.2188.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014. URL http://arxiv.org/pdf/1408.5882v2.pdf.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S Zemel, Antonio Torralba, Raquel
Urtasun, and Sanja Fidler. Skip-thought vectors. arXiv preprint arXiv:1506.06726, 2015.
URL http://arxiv.org/pdf/1506.06726v1.pdf.

Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,
2014.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling semantic parsers
with on-the-fly ontology matching. 2013. URL http://www.aclweb.org/anthology/
D13-1161.pdf.

Adam Lally, John M Prager, Michael C McCord, BK Boguraev, Siddharth Patwardhan, James
Fan, Paul Fodor, and Jennifer Chu-Carroll. Question analysis: How watson reads a clue. IBM
Journal of Research and Development, 56(3.4):2–1, 2012.

Stefan Langerman, Grégory Seront, and Hugues Bersini. Step: The easiest way to optimize a
function. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages
519–524, 1994.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, et al. Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 2014.

Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1, pages 1–7. Association for Computational
Linguistics, 2002. URL http://ucrel.lancs.ac.uk/acl/C/C02/C02-1150.pdf.

Percy Liang. Learning semantic parsers for natural language understanding. 2015. URL http:
//www-cs.stanford.edu/~pliang/papers/semantic-parsing-intro.pdf.

Vanessa Lopez, Victoria Uren, Marta Sabou, and Enrico Motta. Is question answering fit for
the semantic web?: a survey. Semantic Web, 2(2):125–155, 2011. URL http://oro.open.
ac.uk/29573/1/swj124_3.pdf.

Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Bi-population cma-es agorithms with
surrogate models and line searches. In Proceedings of the 15th annual conference companion
on Genetic and evolutionary computation, pages 1177–1184. ACM, 2013.

36

http://cs.umd.edu/~miyyer/pubs/2014_qb_rnn.pdf
http://cs.umd.edu/~miyyer/pubs/2014_qb_rnn.pdf
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1404.2188
http://arxiv.org/pdf/1408.5882v2.pdf
http://arxiv.org/pdf/1506.06726v1.pdf
http://www.aclweb.org/anthology/D13-1161.pdf
http://www.aclweb.org/anthology/D13-1161.pdf
http://ucrel.lancs.ac.uk/acl/C/C02/C02-1150.pdf
http://www-cs.stanford.edu/~pliang/papers/semantic-parsing-intro.pdf
http://www-cs.stanford.edu/~pliang/papers/semantic-parsing-intro.pdf
http://oro.open.ac.uk/29573/1/swj124_3.pdf
http://oro.open.ac.uk/29573/1/swj124_3.pdf

Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J Bethard, and
David McClosky. The stanford corenlp natural language processing toolkit. In Proceedings
of 52nd Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pages 55–60, 2014.

Edgard Marx. openQA: Open source question answering framework, 2014. URL http://aksw.
org/Projects/openQA.html.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013b. URL http://papers.nips.cc/paper/5021-di.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. 2013c. URL http://www.aclweb.org/anthology/N13-1#page=784.

George A Miller. WordNet: a lexical database for english. Communications of the ACM, 38
(11):39–41, 1995.

J William Murdock, Aditya Kalyanpur, Chris Welty, James Fan, David A Ferrucci, DC Gondek,
Lei Zhang, and Hiroshi Kanayama. Typing candidate answers using type coercion. IBM
Journal of Research and Development, 56(3.4):7–1, 2012.

J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal,
7(4):308–313, 1965. doi: 10.1093/comjnl/7.4.308. URL http://comjnl.oxfordjournals.
org/content/7/4/308.abstract.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. Proceedings of the Empiricial Methods in Natural Language Process-
ing (EMNLP 2014), 12:1532–1543, 2014. URL http://llcao.net/cu-deeplearning15/
presentation/nn-pres.pdf.

Petr Pošík. BBOB-benchmarking two variants of the line-search algorithm. In GECCO ’09:
Proceedings of the 11th annual conference companion on Genetic and evolutionary computation
conference, pages 2329–2336, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-505-5. doi:
10.1145/1570256.1570325. URL http://dx.doi.org/10.1145/1570256.1570325.

Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale semantic parsing without
question-answer pairs. Transactions of the Association for Computational Linguistics, 2:
377–392, 2014. URL http://www.aclweb.org/anthology/Q14-1030.

John R Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

Nico Schlaefer, Petra Gieselmann, Thomas Schaaf, and Alex Waibel. A pattern learning ap-
proach to question answering within the ephyra framework. In Text, speech and dialogue,
pages 687–694. Springer, 2006. URL http://petra.w-wie-wolf.de/tsd061a.pdf.

37

http://aksw.org/Projects/openQA.html
http://aksw.org/Projects/openQA.html
http://papers.nips.cc/paper/5021-di
http://www.aclweb.org/anthology/N13-1#page=784
http://comjnl.oxfordjournals.org/content/7/4/308.abstract
http://comjnl.oxfordjournals.org/content/7/4/308.abstract
http://llcao.net/cu-deeplearning15/presentation/nn-pres.pdf
http://llcao.net/cu-deeplearning15/presentation/nn-pres.pdf
http://dx.doi.org/10.1145/1570256.1570325
http://www.aclweb.org/anthology/Q14-1030
http://petra.w-wie-wolf.de/tsd061a.pdf

Joao Silva, Luísa Coheur, Ana Cristina Mendes, and Andreas Wichert. From symbolic to sub-
symbolic information in question classification. Artificial Intelligence Review, 35(2):137–154,
2011.

Amit Singhal. Introducing the knowledge graph: things, not strings. Official Google Blog, May,
2012.

Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai, Jingjing Liu, and Ming-Wei Chang. Open
domain question answering via semantic enrichment. In Proceedings of the 24th International
Conference on World Wide Web, pages 1045–1055. International World Wide Web Conferences
Steering Committee, 2015. URL http://www.cs.ucsb.edu/~huansun/docs/QA_paper.pdf.

Wilson L Taylor. ”Cloze procedure”: a new tool for measuring readability. Journalism quarterly,
1953.

Christina Unger. Multilingual question answering over linked data: Qald-4 dataset, 2014.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural
image caption generator. arXiv preprint arXiv:1411.4555, 2014. URL http://arxiv.org/
abs/1411.4555.

Ellen M Voorhees. Overview of the trec 2002 question answering track. In In Proceedings of
the Eleventh Text REtrieval Conference (TREC), 2002. URL http://trec.nist.gov/pubs/
trec11/papers/QA11.pdf.

Ellen M Voorhees. Overview of the trec 2003 question answering track. 2003. URL http:
//trec.nist.gov/pubs/trec12/papers/QA.OVERVIEW.pdf.

Ellen M Voorhees and DM Tice. Overview of the trec-9 question answering track. In TREC,
2000. URL http://trec.nist.gov/pubs/trec9/papers/qa_overview.pdf.

Ellen M Voorhees and DM Tice. Overview of the trec 2001 question answering track. 2001.
URL http://trec.nist.gov/pubs/trec10/papers/qa10.pdf.

Ellen M Voorhees et al. The trec-8 question answering track report. In TREC, volume 99, pages
77–82, 1999. URL http://trec.nist.gov/pubs/trec8/papers/qa_report.pdf.

Chang Wang, Aditya Kalyanpur, James Fan, Branimir K Boguraev, and DC Gondek. Relation
extraction and scoring in deepqa. IBM Journal of Research and Development, 56(3.4):9–1,
2012.

Mengqiu Wang. A survey of answer extraction techniques in factoid question answering. In
Proceedings of the Human Language Technology Conference and North American Chapter of
the Association for Computational Linguistics (HLT-NAACL), 2006. URL http://www.cs.
cmu.edu/~mengqiu/publication/LSII-LitReview.pdf.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura. What is the jeopardy model? a quasi-
synchronous grammar for qa. In EMNLP-CoNLL, volume 7, pages 22–32, 2007.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. CoRR, abs/1410.3916,
2014. URL http://arxiv.org/abs/1410.3916.

38

http://www.cs.ucsb.edu/~huansun/docs/QA_paper.pdf
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1411.4555
http://trec.nist.gov/pubs/trec11/papers/QA11.pdf
http://trec.nist.gov/pubs/trec11/papers/QA11.pdf
http://trec.nist.gov/pubs/trec12/papers/QA.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec12/papers/QA.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec9/papers/qa_overview.pdf
http://trec.nist.gov/pubs/trec10/papers/qa10.pdf
http://trec.nist.gov/pubs/trec8/papers/qa_report.pdf
http://www.cs.cmu.edu/~mengqiu/publication/LSII-LitReview.pdf
http://www.cs.cmu.edu/~mengqiu/publication/LSII-LitReview.pdf
http://arxiv.org/abs/1410.3916

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-complete
question answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015. URL
http://arxiv.org/abs/1502.05698.

Yi Yang and Ming-Wei Chang. S-mart: Novel tree-based structured learning algorithms applied
to tweet entity linking. 2015. URL http://www.anthology.aclweb.org/P/P15/P15-1049.
pdf.

Xuchen Yao. Lean question answering over freebase from scratch. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics:
Demonstrations, pages 66–70, Denver, Colorado, June 2015. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/N15-3014.

Xuchen Yao and Benjamin Van Durme. Information extraction over structured data: Question
answering with freebase. 2014. URL http://www.aclweb.org/website/old_anthology/P/
P14/P14-1090.pdf.

Xuchen Yao, Benjamin Van Durme, and Peter Clark. Automatic coupling of answer extraction
and information retrieval. In ACL (2), pages 159–165, 2013a. URL http://cs.jhu.edu/
~xuchen/paper/yao-jacana-ir-acl2013.pdf.

Xuchen Yao, Benjamin Van Durme, et al. Answer extraction as sequence tagging with tree
edit distance. In HLT-NAACL, pages 858–867, 2013b. URL http://cs.jhu.edu/~xuchen/
paper/yao-jacana-qa-naacl2013.pdf.

Xuchen Yao, Jonathan Berant, and Benjamin Van Durme. Freebase qa: Information extraction
or semantic parsing? ACL 2014, page 82, 2014. URL http://anthology.aclweb.org/W/
W14/W14-24.pdf#page=94.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep Learning for Answer
Sentence Selection. In NIPS Deep Learning Workshop, December 2014. URL http://arxiv.
org/abs/1412.1632.

Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence model. arXiv
preprint arXiv:1504.05070, 2015. URL http://arxiv.org/pdf/1504.05070v2.pdf.

39

http://arxiv.org/abs/1502.05698
http://www.anthology.aclweb.org/P/P15/P15-1049.pdf
http://www.anthology.aclweb.org/P/P15/P15-1049.pdf
http://www.aclweb.org/anthology/N15-3014
http://www.aclweb.org/website/old_anthology/P/P14/P14-1090.pdf
http://www.aclweb.org/website/old_anthology/P/P14/P14-1090.pdf
http://cs.jhu.edu/~xuchen/paper/yao-jacana-ir-acl2013.pdf
http://cs.jhu.edu/~xuchen/paper/yao-jacana-ir-acl2013.pdf
http://cs.jhu.edu/~xuchen/paper/yao-jacana-qa-naacl2013.pdf
http://cs.jhu.edu/~xuchen/paper/yao-jacana-qa-naacl2013.pdf
http://anthology.aclweb.org/W/W14/W14-24.pdf#page=94
http://anthology.aclweb.org/W/W14/W14-24.pdf#page=94
http://arxiv.org/abs/1412.1632
http://arxiv.org/abs/1412.1632
http://arxiv.org/pdf/1504.05070v2.pdf

	Introduction
	Factoid Question Answering
	Task Outline
	This Thesis Proposal

	State of the Art in Factoid Question Answering
	Structured Data QA
	Dataset and Evaluation
	Information Retrieval Approach
	Semantic Parsing Approach

	Unstructured Data QA
	Dataset and Evaluation
	Answer Sentence Selection
	Precise Answer Production
	Non-TREC QA

	Auxiliary Tasks in QA
	Question Classification
	Answers by Paraphrasing

	Hybrid QA Systems
	Non-Factoid QA
	Vector Embeddings of Words

	The YodaQA System
	YodaQA Pipeline Architecture
	YodaQA Reference Pipeline
	Question Analysis
	Unstructured Knowledge Bases
	Structured Knowledge Bases
	Answer Analysis
	Answer Merge-and-Score
	Successive Refining

	Results
	Experimental Setup
	System Evaluation
	Comparison to Other Systems

	Datasets and Other Work

	Future Work
	Conclusion
	Acknowledgements

	Portfolio-Based Optimization
	Online Black-box Algorithm Portfolios
	Minimizing Separable Functions by a Mix of Methods

	Bibliography

