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Abstract. This is a preprint, submitted on 2015-03-22.
Question Answering as a sub-field of information retrieval
and information extraction is recently enjoying renewed pop-
ularity, triggered by the publicized success of IBM Watson
in the Jeopardy! competition. But Question Answering re-
search is now proceeding in several semi-independent tiers
depending on the precise task formulation and constraints on
the knowledge base, and new researchers entering the field
can focus only on various restricted sub-tasks as no modern
full-scale software system for QA has been openly available
until recently.

By our YodaQA system that we introduce here, we seek to re-
unite and boost research efforts in Question Answering, pro-
viding a modular, open source pipeline for this task — allow-
ing integration of various knowledge base paradigms, an-
swer production and analysis strategies and using a machine
learned models to rank the answers. Within this pipeline,
we also supply a baseline QA system inspired by DeepQA
with solid performance and propose a reference experimen-
tal setup for easy future performance comparisons.

In this paper, we review the available open QA platforms,
present the architecture of our pipeline, the components of
the baseline QA system, and also analyze the system perfor-
mance on the reference dataset.

Keywords
Question answering, information retrieval, information
extraction, linked data, natural language processing,
Apache UIMA, software engineering.

1. Introduction
We consider the Question Answering problem — a

function of unstructured user query that returns the infor-
mation queried for. This is a harder problem than a linked
data graph search (which requires a precisely structured user
query) or a generic search engine (which returns whole docu-
ments or sets of passages instead of the specific information).
The Question Answering task is however a natural exten-
sion of a search engine, as currently employed e.g. in Google
Search [22] or personal assistants like Apple Siri, and with
the high profile IBM Watson Jeopardy! matches [10] it has
became a benchmark of progress in AI research. As we are

interested in a general purpose QA system, we will consider
an “open domain” general factoid question answering, rather
than domain-specific applications, though we keep flexibil-
ity in this direction as one of our goals.

Diverse QA system architectures have been proposed
in the last 15 years, applying different approaches to infor-
mation retrieval. A full survey is beyong the scope of this
paper, but let us outline at least the most basic choices we
faced when designing our system.

Perhaps the most popular approach in QA research has
been restricting the task to querying structured knowledge
bases, typically using the RDF paradigm and accessible via
SPARQL. The QA problem can be then rephrased as learn-
ing a function translating free-text user query to a structured
lambda expression or SPARQL query. [3] [5] We prefer to
focus on unstructured datasets as the coverage of the system
as well as domain versatility increases dramatically; building
a combined portfolio of structured and unstructured knowl-
edge bases is then again an obvious extension.

When relying on unstructured knowledge bases, a com-
mon strategy is to offload the information retrieval on an ex-
ternal high-quality web search engine like Google or Bing
(see e.g. the Mulder system [15] or many others). We make
a point of relying purely on local information sources. While
the task becomes noticeably harder, we believe the result is
a more universal system that could be readily refocused on
a specific domain or proprietary knowledge base, and also
a system more appropriate as a scientific platform as the re-
sults are fully reproducible over time.

Finally, a common restriction of the QA problem con-
cerns only selecting the most relevant answer-bearing pas-
sage, given a tuple of input question and set of pre-selected
candidate passages [23]. This Answer Sentence Selection
task is certainly worthwhile as a component of a QA sys-
tem but does not form a full-fledged system by itself. It may
be argued that returning a whole passage is more useful for
the user than a direct narrow answer, but this precludes any
reasoning or other indirect answer synthesis on the part of
the system, while the context and supporting evidence can
be still provided by the user interface. Direct answer output
may be also used in a more general AI reasoning engine.

In this paper, we present our open source Question
Answering system brmson TM YodaQA. This is not the
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only open source QA framework currently available, but we
found our goals not entirely compatible with any of the other
systems we investigated. Specifically, we aim to build a sys-
tem that (A) provides an end-to-end, universal pipeline in-
tegrating different knowledge base paradigms in a modular
fashion; (B) is domain flexible and could cater even to the
long tail of rarer question subjects, therefore has minimum
of fixed categories and hand-coded rules.

In contrast, the classic QA system OpenEphyra [21]
operates on the basis of fixed question categories with hand-
crafted rules, and puts emphasis on querying web search en-
gines. The OAQA initiative [12] has developed a basic QA
framework, but does not provide an end-to-end pipeline and
its usage of UIMA has in our opinion severe design limi-
tations (see below). The WatsonSim system [13] has begun
developing independently during the course of our own work
and it works on Jeopardy! statements rather than questions.

Jacana [24] [25] is a promising set of loosely coupled
QA-related methods and algorithms, focused on machine
learning of textual entailment. It is not meant to be a full
QA framework and using it as an end-to-end pipeline is not
straightforward, but integration of the Jacana implementa-
tion as modules in YodaQA is our long-term plan.

OpenQA [1] is a recently introduced end-to-end QA
pipeline platform also developed independently during the
course of our work, and shares our goal of a common re-
search platform in the field. However, the approach is very
different, as OpenQA is more of a portfolio-style engine with
mostly independent pipelines which have their candidate an-
swers combined, while YodaQA emphasizes modularity on
the pipeline stage level, with e.g. all answer producers shar-
ing a common answer analysis stage.

The rest of the paper is structured as follows. We out-
line the general structure of our framework in Sec. 2. We
then describe the current reference implementation of the
pipeline components in Sec. 3. We propose a common exper-
imental setup and analyze the system performance in Sec. 4.
We conclude with a summary of our contributions and an
outline of future extensions in Sec. 5.

2. YodaQA Pipeline Architecture
The goals for our system brmson TM YodaQA are to

provide an open source Question Answering platform that
can serve both as scientific research testbed and a practical
system. The pipeline is implemented mainly in Java, using
the popular Apache UIMA framework [11]. Extensive sup-
port tooling is included within the package.

Unlike OAQA, in YodaQA each artifact (question,
search result, passage, candidate answer) is represented as
a separate UIMA CAS, allowing easy parallelization and
easy leverage of pre-existing NLP UIMA components; we
also put emphasis on aggressive compartmentalization of

different tasks to interchangeable annotators rather than us-
ing UIMA just for high level flow and annotation storage.

The framework is split in several Java packages: io
package takes care of retrieving questions and returning
answers, pipeline contains classes of the general pipeline
stages, analysis contains modules for various analysis steps,
provider has interfaces to various external resources and
flow carries UIMA helper classes.

The system maps an input question to ordered list of
answer candidates in a pipeline fashion, with the flow as in
Fig. 1, encompassing the following stages:

• Question Analysis extracts natural language features
from the question text and produces QA features based
on them (clues, type, etc.).

• Answer Production generates a set of candidate an-
swers based on the question. Typically, this happens by
performing a Primary Search in the knowledge bases
according to the question clues, and either directly us-
ing search results as candidate answers or filtering rel-
evant passages from these (the Passage Extraction)
and generating candidate answers from picked passages
(the Passage Analysis).

• Answer Analysis generates various answer features
based on detailed analysis (most importantly, type de-
termination and coercion to question type).

• Answer Merging and Scoring consolidates the set
of answers, removing duplicates and using a machine
learned classifier to score answers by their features.

• Successive Refining (optional) prunes the set of ques-
tions in multiple phases, interjecting some extra tasks
(evidence diffusion and gathering additional evidence).

The basic pipeline flow is much inspired by the Deep-
QA model of IBM Watson [9]. Throughout the flow, an-
swer features are gradually accumulated and some results of
early flow stages (especially the question analysis) are car-
ried through the rest of the flow.

3. YodaQA Reference Pipeline
The particular Question Answering problem consid-

ered in the reference pipeline is finding a precise (narrowly
phrased) answer to a naturally phrased English question,
based on both unstructured (English Wikipedia, enwiki) and
structured (DBpedia [17], Freebase [4]) knowledge bases.

In our pipeline, we build on existing third-party NLP
analysis tools, in particular Stanford CoreNLP (Segmenter,
POS-Tagger, Parser) [18] [6], OpenNLP (Segmenter, NER)
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Fig.1. The general architecture of the YodaQA pipeline. Present but unused final pipeline portions not shown.

[2] and LanguageTool (Segmenter, Lemmatizer).12 NLP
analysis backends are freely interchangeable thanks to the
DKPro UIMA interface [8]. For semantic analysis, we also
rely heavily on the WordNet lexicon [19].

For a practical illustration of the pipeline processing
two particular example questions, please follow Fig. 4 and 5.

3.1. Question Analysis

During question analysis, produce a part-of-speech tag-
ging and dependency parse of the question text, recognize
named entities and, roughly inspired by the DeepQA system
[16], heuristically generate several QA features: Clues, Fo-
cus, and LAT.

Clues represent keywords in the question that deter-
mine its content and are used to query for candidate answers.
Clues based on different question components are assigned
different weight (used in search retrieval and passage extrac-
tion, determined empirically) — in ascending other, all noun
phrases, noun tokens and the selection verb (SV); the LAT
(see below); named entities; the question sentence subject
(determined by dependency parse). If the clue text corre-
sponds to an enwiki article name or redirect alias, its weight
is boosted and it is flagged as a concept clue.

Focus is the center point of the question sentence indi-
cating the queried object. Six simple hand-crafted heuristics
extract the focus based on the dependency parse. “name of
—” constructions are traversed.

1http://www.languagetool.org/
2Sometimes, different pipeline components default to different NLP

backends to perform the same task, e.g. segmentation, based on empirically
determined best fit.

LAT (Lexical Answer Type) describes a type of the an-
swer that would fit the question. This type is not of a pre-
defined category but may be an arbitrary English noun, like
in the DeepQA system. [20] The LAT is derived from the
focus, except question words are mapped to nouns (“where”
to “location”, etc.) and adverbs (like “hot”) are nominalized
(to “temperature”) using WordNet relations.

3.2. Unstructured Answer Sources

The primary source of answers in our QA system is
keyword search in free-text knowledge base, in our default
setting the enwiki. While the information has no formal
structure, we take advantage of the organization of the en-
wiki corpus where entity descriptions are stored in articles
that bear the entity name as title and the first sentence is
typically an informative short description of the entity. Our
search strategies are analogous to basic DeepQA free-text
information retrieval methods [7]. We use the Apache Solr3

search engine (frontend to Apache Lucene).

Title-in-clue search [7] looks for the question clues in
the article titles, essentially aiming to find articles that de-
scribe the concepts touched in the question. The first sen-
tence of the top six articles (which we assume is its sum-
mary) is then used in passage analysis (see below).

Full-text search [7] runs a full-text clue search in the
article texts and titles, considering the top six results. The
document texts are split to sentences which are treated as
separate passages and scored based on sum of weights of

3http://lucene.apache.org/solr/
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clues occuring in each passage45; the top three passages from
each document are picked for passage analysis.

Document search [7] runs a full-text clue search in the
article texts; top 20 article hits are then taken as potential
responses, represented as candidate answers by their titles.

Concept search retrieves articles whose titles (or redi-
rect aliases) exactly match a question clue. The first sentence
and also passages extracted as in the full-text search are used
for passage analysis.

Given a picked passage, the passage analysis process
executes an NLP pipeline and generates candidate answers;
currently, the answer extraction strategy entails simply con-
verting all named entities and noun phrases to candidate an-
swers. Also, object constituents in sentences where subject
is the question LAT are converted to candidate answers.

3.3. Structured Answer Sources

Aside of full-text search, we also employ structured
knowledge bases organized in RDF triples; for each concept
clue, we query for predicates with this clue as a subject and
generate candidate answers for each object in such a triple,
with the predicate label seeded as one LAT of the answer.

In particular, we query the DBpedia ontology (cu-
rated) and property (raw infobox) namespaces and the
Freebase RDF dump. For performance reasons, we limit the
number of queried Freebase topics to 5 and retrieve only 40
properties per each; due to this limitation, we have manu-
ally compiled a blacklist of skipped “spammy” properties
based on past system behavior analysis (e.g. location’s peo-
ple born here or music artist’s track).

3.4. Answer Analysis

In the answer analysis, the system takes a closer look
at the answer snippet and generates numerous features for
each answer. The dominant task here is type coercion, i.e.
checking whether the answer type matches the question LAT.

The answer LAT is produced by multiple strategies:

• Answers generated by a named entity recognizer have
LAT corresponding to the triggering model; we use
stock OpenNLP NER models date, location, money, or-
ganization, percentage, person and time.

• Answers containing a number have a generic quantity
LAT generated.

• Answer focuses (the parse tree roots) are looked up
in WordNet and instance-of pairs are used to generate
LATs (e.g. Einstein is instance-of scientist).

4The about-clues which occur in the document title have their weight
divided by four (as determined empirically).

5We also carry an infrastructure for machine learning models scoring
candidate passages, but they have not been improving performance so far.

• Answer focuses are looked up in DBpedia and its on-
tology is used to generate LATs.

• Answers originating from a structured knowledge base
carry the property name as an LAT.

Type coercion between question and answer LATs is
performed using the WordNet hypernymy relation — i.e.
scientist may be generalized to person, or length to quan-
tity. We term the type coercion score WordNet specificity
and exponentially decrease it with the number of hypernymy
traversals required. Answer LATs coming from named en-
tity recognizer and quantity are not generalized. We never
generalize further once within the noun.Tops WordNet
domain and based on past behavior analysis, we have man-
ually compiled a further blacklist of WordNet synsets that
are never accepted as coercing generalizations (e.g. trait or
social group).

The generated features describe the origin of the an-
swer (data source, search result score, clues of which type
matched in the passage, distance-based score of adjacent
clue occurences, etc.), syntactic overlaps with question clues
and type coercion scores (what kind of LATs have been gen-
erated, if any type coercion succeeded, what is the WordNet
specificity and whether either LAT had to be generalized).

3.5. Answer Merge-and-Score

The merging and scoring process also basically follows
a simplified DeepQA approach [14]. Candidate answers of
the same text (up to basic normalization, like the- removal)
are merged; element-wise maximum is taken as the resulting
answer feature vector (except for the #occurences fea-
ture, where a sum is taken). To reduce overfitting, too rare
features are excluded (when they occur in less than 1% ques-
tions and 0.1% answers).

Supplementary features are produced for each logical
feature — aside of the original value, a binary feature denot-
ing whether a feature has not been generated and a value nor-
malized over the full set of answers so that the distribution of
the feature values over the answer has mean 0 and standard
deviation 1. The extended feature vectors are converted to
a score s ∈ [0, 1] using a logistic regression classifier. The
weight vector is trained on the gold standard of a training
dataset, employing L2 regularization objective. To strike a
good precision-recall balance, positive answers (which are
about p = 0.03 portion of the total) are weighed by 0.5/p.

3.6. Successive Refining

The pipeline contains support for additional refining
and scoring phases. By default, after initial answer scoring,
only the top 25 answers are kept with the intent of reduc-
ing noise for the next answer scoring classifier. Answers are
compared and those overlapping syntactically (prefix, suffix,
or substring aligned with sub-phrase boundaries) are subject
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to evidence diffusion where their scores are used as features
of the overlapping answers. Another answer scoring would
be then performed, and the answer with the highest score is
then finally output by the system.6

However, while we have found these extra scoring steps
beneficial with weaker pipelines (in particular without the
clue overlap features), in the final pipeline configuration the
re-scoring triggers significant overfitting on the training set
and we therefore ignore the successive refining stage in the
benchmarked pipeline.

4. Performance Analysis
As we present performance analysis of our system, we

shall first detail our experimental setup; this also includes
discussion of our question dataset.

Then, we proceed with the actual results — we mea-
sure the recall of the system (whether a correct answer has
been generated and considered, without regard to its score)
and accuracy-at-one (whether the correct answer has been
returned as the top answer by the system). We find this pre-
ferrable to typical information retrieval measures like MRR
or MAP since in many applications, eventually only the sin-
gle top answer output by the system matters; however, we
also show the mean reciprocial rank for each configuration
and discuss the rank distribution of correct answers.

Aside of the performance of the default configuration,
we also discuss scaling of the system (extending the alotted
answer time) and performance impact of its various compo-
nents (hold-out testing).

4.1. Experimental Setup

Our code is version tracked in a public GitHub
repository https://github.com/brmson/yodaqa,
and the experiments presented here are based on commit
f6c0cf6 (tagged as v1.0). The quality of full-text search
is co-determined by Solr version (we use 4.6.0) and mod-
els of the various NLP components which are brought in
by DKPro version 1.7.0. As for the knowledge bases, we
use enwiki-20150112, DBpedia 2014, Freebase RDF dump
from Jan 11 2015, and WordNet 3.1. Detailed instructions
on setting up the same state locally (including download of
the particular dump versions and configuration files) are dis-
tributed along the source code.

As a benchmark of the system performance, we use a
dataset of 430 training and 430 testing open domain factoid
questions. (For system development, exclusively questions
from the training set are used.) This dataset is based on the

6There is also experimental support for additional evidence gathering
phase, where the top 5 answers are looked up using the full-text search to-
gether with the question clues, and the number and score of hits are used as
additional answer features and final answer rescoring is performed. Never-
theless, we have not found this approach effective.
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public question answering benchmark from the main tasks
of the TREC 2001 and 2002 QA tracks with regular expres-
sion answer patterns7 and extended by questions asked to
a YodaQA predecessor by internet users via an IRC inter-
face. This dataset was further manually reviewed by the au-
thor, ambiguous or outdated questions were removed and the
regex patterns were updated based on current data. We re-
fer to the resulting 867 question dataset as curated and
randomly split it to the training and testing sets.8

An automatic benchmark evaluation system is dis-
tributed as part of the YodaQA software package. The sys-
tem evaluates the training and test questions in parallel and
re-trains the machine learning models before scoring the an-
swers. Therefore, in all the modified system versions con-
sidered below, a model trained specifically for that version is
used for scoring answers.

Our benchmark is influenced by two sources of noise.
First, the answer correctness is determined automatically by
matching a predefined regex, but this may yield both false
positives and false negatives.9 Second, during training the
models are randomly initialized and therefore their final per-
formance on a testing set flutters a little.

4.2. Benchmark Results

Benchmark results over various pipeline configurations
are laid out in Fig. 2. Aside of the general performance of
the system, it is instructive to look at the histogram of answer
ranks for the default pipeline, shown in Fig. 3. We can ob-
serve that while accuracy-at-one is 32.6%, accuracy-at-five
is already at 52.7% of test questions.

The information retrieval parameters of the default
pipeline are selected so that answering a question takes about

7http://trec.nist.gov/data/qa/2001_qadata/main_
task.html and 2002 analogically.

8The remaining 7 questions are left unused for now.
9For example numerical quantities with varying formatting and units are

notoriously tricky to match by a regular expression.
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Pipeline Recall Accuracy-at-1 MRR time

default 79.3% 32.6% 0.420 28.8s

full-text scaling (6→ 12 fetched results) 82.3% 34.0% 0.430 50.0s

passage scaling (3→ 6 picked passages) 81.2% 31.4% 0.415 43.5s

document search scaling (20→ 40) 80.0% 31.6% 0.418 34.9s

freebase scaling (5→ 10 topics, 40→ 80 properties) 79.8% 31.6% 0.416 29.8s

full-text hold-out 49.5% 20.9% 0.277 5.8s

structured hold-out 73.5% 29.1% 0.376 23.8s

type coercion hold-out 79.3% 22.1% 0.314 30.0s

concept clues hold-out 67.9% 23.0% 0.314 25.6s

clue overlap test hold-out 79.3% 29.5% 0.390 30.1s

Fig.2. Benchmark results of various pipeline variants on the curated test dataset. MRR is the Mean Reciprocal Rank |Q| ·∑
q∈Q 1/rq , time is the average time spent answering one question.

30s on average on a single core of AMD FX-8350 with
24GB RAM and SSD backed databases. (Note that no com-
putation pre-processing was done on the knowledge bases
or datasets; bulk of the time per question is therefore spent
querying the search engine and parsing sentences, making it
an accurate representation of time spent on previously un-
seen questions.) By raising the limiting parameters, we can
observe further recall increase, and in case of considering
more full-text search results, also a solid accuracy improve-
ment. Our system could therefore meaningfully make use of
further computing resources.

We also benchmarked performance with various com-
ponents of the pipeline disabled. We can see that the full-text
and structured knowledge bases are complementary to a de-
gree, but the full-text base is eventually a much stronger an-
swer source for our system. Type coercion and detection of
the concept clues in the question are both important heuris-
tics for our QA system.

Comparison of performance across multiple systems is
currently non-trivial, unfortunately, as there is no univer-
sally agreed experimental setup so far and not even pub-
lished results on the TREC datasets from the years we use are
readily available. OpenEphyra seemed to typically achieve
accuracy-at-one of “above 25%” on the TREC datasets in-
cluding our years according to [21]. In the Answer Sentence
Selection task [23], Jacana and similar textual entaliement
systems are reported10 to achieve MRR around 0.750 but this
task represents a significant restriction upon the general end-
to-end QA pipeline.

5. Conclusion
We have described a modular question answering sys-

tem which can be used for effective mixing of both struc-
tured and unstructured knowledge bases, is domain-flexible
and highly amenable to further extensions in various stages
of its pipeline. We put emphasis on universal, machine

10See the ACL Wiki topic Question Answering (State of the art).

learned methods and employ only a very limited amount of
hand-crafted heuristics.

Meanwhile, the system is already demonstrating a rea-
sonable open domain factoid question answering perfor-
mance, being able to answer a third of the testing set ques-
tions correctly, over half of the questions in top five answers,
and considering the correct answer for just about 80% of the
questions; we have also shown a head-room for further per-
formance scaling by extending the available computational
resources.

Our system is made available as open source under
the highly permissive Apache Software Licence11 and avail-
able for research collaboration on the GitHub social software
hosting site. We hope for our system to become an univer-
sal research platform for testing of various question answer-
ing related strategies not only in isolation but also measur-
ing their effect in a real-world high performance end-to-end
pipeline. We also hope our work helps to clarify which of
the numerous DeepQA contributions are most essential to a
minimal working modern QA system.

5.1. Future Work

We present here just the first version of a system that
could be improved in many desirable ways. The software
platform itself would benefit in particular from a multi-
threaded pipeline flow driver, a sophisticated user interface
showing the generated answer in context and hypertext, and
sped up benchmarking by caching information retrieval re-
sults (parsed picked passages) across runs.

Regarding algorithmic improvements, the most obvi-
ous candidates seem a more sophisticated answer extrac-
tion strategy (e.g. employing methods introduced in Jacana
seems as a natural fit) and more reliable type coercion as a
negative evidence source; we also hope that distributed rep-

11The GPL licence applies in case Stanford CoreNLP components are
employed.
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resentations might improve both areas. We feel that without
further large effort in feature engineering, logistic regression
is inadequate for scoring answers and we are seeing promis-
ing preliminary results from employing random forests in-
stead.

Analysis and model training would be improved with
larger benchmark datasets with more sophisticated correct
answer verification. Some sub-tasks like type coercion
would benefit from specialized datasets, and passage extrac-
tion scoring could be tuned on the Answer Sentence Selec-
tion dataset.

A robust heuristic for additional evidencing of most
promising answers remains as an open problem in our sys-
tem. While the natural idea of additional fulltext search com-
bining the question and answer has been beneficial with a
less sophisticated pipeline, it does not improve performance
with our current featureful pipeline.
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Question Text Who wrote Ender’s Game?

Q. Analysis Focus: who; SV: wrote; LAT: person

Question Clues Ender’s Game (concept clue), wrote

Primary Search
(DBpOnt.)

author: Orson Scott Card, publisher: Tor Books, . . .

Primary Search
(DBpProp.)

(ibid), cover artist: John Harris, Caption: 2005, . . .

Primary Search
(Freebase)

Author Orson Scott Card, Characters Valentine
Wiggin, Hive Queen, . . .

Primary Search
(concepts)

enwiki Ender’s Game

Primary Search
(fulltext)

Query: +("wrote" OR titleText:
"wrote")ˆ1.0 +("ender’s Game"
OR titleText:"ender’s Game")ˆ1.1
("wrote ender’s Game "˜4)ˆ2.1 . . .

Found: Ender’s Game (series), Ender’s Game, En-
der’s Game (film), Ender’s Game (comics), Jane (En-
der’s Game), List of Ender’s Game series planets

Sample picked passages: Elaborating on characters
and plot lines depicted in the novel, Card later wrote
additional books to form the Ender’s Game series.

. . . Valentine wrote an essay here comparing the
priestly class to the skeletons of small vertebrates
some time before Speaker for The Dead.

Primary Search
(titles)

Ender’s Game, List of Ender’s Game characters, Jane
(Ender’s Game), Ender’s Game (short story), Ender’s
Game (film), Ender’s Game (series)

Sample first passage: ”Ender’s Game” is a 1985 mil-
itary science fiction novel by American author Orson
Scott Card.

Primary Search
(document)

Ender’s Game (series), Elisabeth Hirsch, Orson Scott
Card, Ender in Exile, Worthing Inn, Jane (Ender’s
Game), . . .

Orscon Scott
Card

Structured primary search LAT author (Wordnet hy-
pernyms communicator, person, maker, creator);
DBpedia LAT writer (Wordnet hypernyms communi-
cator, person); NER LAT person

Successful type coercion match!, “sharp” (exact spe-
cific) match from NER LAT!
occurences: 19!, origins: document title, concept!,
first passage, noun phrase, named entity, multiple ori-
gins, other: adjecent to a concept clue mention, no
clue text overlap!

Jane Structured primary search LAT character (Wordnet
hypernyms imaginary being, creativity, person, mes-
sage and 36 others); NER LAT person

Successful type coercion match!, “sharp” (exact spe-
cific) match from NER LAT!
occurences: 4, origins document title, first passage,
noun phrase, named entity, multiple origins, other:
no clue text overlap!

Final Answers Orson Scott Card (0.99), Neal Shusterman (0.96),
Elisabeth Hirsch (0.96), American author Orson Scott
Card (0.96), . . . , List of Ender’s Game series planets
(0.94), Gavin Hood (0.94), Print (0.93), Jane (0.91),
. . .

Fig. 4. A sample of the pipeline process when (correctly) an-
swering a training question. ! indicates particularly dis-
tinguishing features.

Question Text What is the name of the famous dogsledding race held
each year in Alaska?

Q. Analysis Focus: name; SV: held; LAT: race (by Wordnet hy-
pernym: contest, event, biological group, canal and 9
others)

Question Clues name, Alaska (concept clues), race, held, famous,
dogsledding, race, year

Primary Search
(DBpOnt.)

area Total: 1717854.0, country: United States, . . .

Primary Search
(DBpProp.)

(ibid), West: Chukotka, Income Rank: 4, . . .

Primary Search
(Freebase)

Date Founded 1959-01-03, Capital Juneau, . . .

Primary Search
(concepts)

enwiki Alaska, Name

Sample picked passages: Various races are held
around the state, but the best known is the Iditarod
Trail Sled Dog Race, a 1150 mi trail from Anchorage
to Nome (although the distance varies from year to
year, the official distance is set at 1049 mi).

. . . Automobiles typically have a binomial name, a
”make” (manufacturer) and a ”model”, in addition to
a model year, such as a 2007 Chevrolet Corvette.

Primary Search
(fulltext)

Query: ("the name of the famous
dogsledding race held each year
in Alaska" OR titleText:...)ˆ2.7
+("name" OR titleText:"name")ˆ2.6 . . .

Found: List of New Hampshire historical markers

Primary Search
(titles)

Name of the Year, Danish Sports Name of the
Year, List of organisms named after famous people,
Alaska!, Alaska, Race of a Thousand Years

Sample first passage: The 2000 Race of a Thousand
Years was an endurance race and the final round of
the 2000 American Le Mans Series season.

Primary Search
(document)

List of New Hampshire historical markers

The 2000 Race
of a Thousand
Years

Focus: Race; DBpedia LAT automobile race, auto
race in australia, new year celebration, quantity LAT

Successful type coercion match!, “sharp” (exact spe-
cific) match!
occurences: 1, origins: first passage, noun phrase,
other: adjecent to an LAT clue mention!, containing
clue text

Iditarod Trail
Sled Dog Race

Focus: Race; DBpedia LAT sport, sport in alaska,
alaska, winter sport, attraction; (N.B. no race LAT)

Successful type coercion match, loose match by gen-
eralization of attraction to social event!
occurences: 1, origins passage by various clues,
noun phrase, other: suffixed by clue text

Final Answers The 2000 Race of a Thousand Years (0.97), –01-
03 (0.94), List of New Hampshire historical mark-
ers (0.93), a binomial name, a ”make” (manufacturer)
and a ”model”, in addition to a model year, such as
a 2007 Chevrolet Corvette (0.90), the Iditarod Trail
Sled Dog Race (0.89), Various races (0.83), . . .

Fig. 5. A sample of the pipeline process when (not quite cor-
rectly) answering a training question. ! indicates partic-
ularly distinguishing features.


